TY - JOUR
T1 - Quantum Interference Engineering of Nanoporous Graphene for Carbon Nanocircuitry
AU - Calogero, Gaetano
AU - Alcón, Isaac
AU - Papior, Nick Rübner
AU - Jauho, Antti-Pekka
AU - Brandbyge, Mads
PY - 2019
Y1 - 2019
N2 - Bottom-up prepared carbon nanostructures appear as promising platforms for future carbon-based nanoelectronics due to their atomically precise and versatile structure. An important breakthrough is the recent preparation of nanoporous graphene (NPG) as an ordered covalent array of graphene nanoribbons (GNRs). Within NPG, the GNRs may be thought of as 1D electronic nanochannels through which electrons preferentially move, highlighting NPG's potential for carbon nanocircuitry. However, the π-conjugated bonds bridging the GNRs give rise to electronic crosstalk between the individual 1D channels, leading to spatially dispersing electronic currents. Here, we propose a chemical design of the bridges resulting in destructive quantum interference, which blocks the crosstalk between GNRs in NPG, electronically isolating them. Our multiscale calculations reveal that injected currents can remain confined within a single, 0.7 nm wide, GNR channel for distances as long as 100 nm. The concepts developed in this work thus provide an important ingredient for the quantum design of future carbon nanocircuitry.
AB - Bottom-up prepared carbon nanostructures appear as promising platforms for future carbon-based nanoelectronics due to their atomically precise and versatile structure. An important breakthrough is the recent preparation of nanoporous graphene (NPG) as an ordered covalent array of graphene nanoribbons (GNRs). Within NPG, the GNRs may be thought of as 1D electronic nanochannels through which electrons preferentially move, highlighting NPG's potential for carbon nanocircuitry. However, the π-conjugated bonds bridging the GNRs give rise to electronic crosstalk between the individual 1D channels, leading to spatially dispersing electronic currents. Here, we propose a chemical design of the bridges resulting in destructive quantum interference, which blocks the crosstalk between GNRs in NPG, electronically isolating them. Our multiscale calculations reveal that injected currents can remain confined within a single, 0.7 nm wide, GNR channel for distances as long as 100 nm. The concepts developed in this work thus provide an important ingredient for the quantum design of future carbon nanocircuitry.
U2 - 10.1021/jacs.9b04649
DO - 10.1021/jacs.9b04649
M3 - Journal article
C2 - 31342738
SN - 0002-7863
VL - 141
SP - 13081
EP - 13088
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 33
ER -