Quantitative measurement of aerosol deposition on skin, hair and clothing for dosimetric assessment. Final report

C.L. Fogh, M.A. Byrne, Kasper Grann Andersson, K.F. Bell, Jørn Roed, A.J.H. Goddard, D.V. Vollmair, S.A.M. Hotchkiss

    Research output: Book/ReportReportResearch

    206 Downloads (Pure)

    Abstract

    In the past, very little thought has been given to the processes and implications of deposition of potentially hazardous aerosol directly onto humans. This state of unpreparedness is unsatisfactory and suitable protocols have been developed and validated for tracer experiments to investigate the deposition and subsequent fate of contaminant aerosol on skin, hair and clothing. The main technique applied involves the release and subsequent deposition on volunteers in test rooms of particles of different sizes labelled with neutron activatable rare earth tracers. Experiments indicate that the deposition velocity to skin increases linearly with the particle size. A wind tunnel experiment simulating outdoor conditions showed a dependence on skin deposition velocity of wind speed, indicating that outdoor deposition velocities may be great. Both in vivo and in vitro experiments were conducted, and the influence of various factors, such as surface type, air flow, heating and electrostatics were examined. The dynamics of particle removal from human skin were studied by fluorescence scanning. This technique was also applied to estimate the fraction of aerosol dust transferred to skin by contact with a contaminated surface. The various parameters determined were applied to establish a model for calculation of radiation doses received from deposition of airborne radioactive aerosol on human body surfaces. It was found that the gamma doses from deposition on skin may be expected to be of the same order of magnitude as the gamma doses received over the first year from contamination on outdoor surfaces. According to the calculations, beta doses from skin deposition to individuals in areas of Russia, where dry deposition of Chernobyl fallout led to very high levels of contamination, may have amounted to several Sievert and may thus be responsible for a significant cancer risk.
    Original languageEnglish
    Place of PublicationRoskilde
    PublisherRisø National Laboratory
    Number of pages57
    ISBN (Print)87-550-2446-7
    Publication statusPublished - 1999
    SeriesDenmark. Forskningscenter Risoe. Risoe-R
    Number1075(EN)
    ISSN0106-2840

    Keywords

    • Risø-R-1075
    • Risø-R-1075(EN)

    Fingerprint Dive into the research topics of 'Quantitative measurement of aerosol deposition on skin, hair and clothing for dosimetric assessment. Final report'. Together they form a unique fingerprint.

    Cite this