Projects per year
Abstract
The performance of electrochemical ceramic devices such as solid oxide fuel and
electrolyser cells depends on the distribution of constituent phases on the micro
or nano scale, also known as the microstructure. The microstructure governs
key properties such as ion, electron and gas transport through percolating networks
and reaction rates at the triple phase boundaries. Quantitative analysis
of microstructure is thus important both in research and development of optimal
microstructure design and fabrication. Three dimensional microstructure characterization
in particular holds great promise for gaining further fundamental
understanding of how microstructure affects performance.
In this work, methods for automatic 3D characterization of microstructure are
studied: from the acquisition of 3D image data by focused ion beam tomography
to the extraction of quantitative measures that characterize the microstructure.
The methods are exemplied by the analysis of Ni-YSZ and LSC-CGO electrode
samples.
Automatic methods for preprocessing the raw 3D image data are developed. The
preprocessing steps correct for errors introduced by the image acquisition by the
focused ion beam serial sectioning. Alignment of the individual image slices is
performed by automatic detection of ducial marks. Uneven illumination is
corrected by tting hypersurfaces to the spatial intensity variation in the 3D
image data.
Routine use of quantitative three dimensional analysis of microstructure is generally
restricted by the time consuming task of manually delineating structures
within each image slice or the quality of manual and automatic segmentation schemes. To solve this, a framework for the automatic segmentation of 3D image
data is developed. The technique is based on a level set method and uses
numerical approximations to partial differential equations to evolve a 3D surface
to capture the phase boundaries. Vector fields derived from the experimentally
acquired data are used as the driving forces. The framework performs the segmentation
in 3D rather than on a slice by slice basis. It naturally supplies
sub-voxel accuracy of segmented surfaces and allows constraints on the surface
curvature to enforce a smooth surface in the segmentation.
A high accuracy method is developed for calculating two phase boundary surface
areas and triple phase boundary length of triple phase systems. The calculations
are based on sub-voxel accuracy segmentations of the constituent phases. The
method performs a three phase polygonization of the interface boundaries which
results in a non-manifold mesh of connected faces. The triple phase boundaries
can be extracted from the mesh as connected curve loops without branches. The
accuracy of the method is analyzed by calculations on geometrical primitives.
A suite of methods is developed for characterizing the shape and connectivity
of phase networks. The methods utilize the fast marching method to compute
distance maps and optimal paths in the microstructure network. The extracted
measurements are suited for the quantitative comparison and evaluation of microstructures.
The quantitative measures characterize properties of network
path tortuosity, network thickness, transport path width and dead ends.
Original language | English |
---|
Place of Publication | Kgs. Lyngby, Denmark |
---|---|
Publisher | Technical University of Denmark |
Publication status | Published - Sept 2010 |
Series | IMM-PHD-2010-231 |
---|
Keywords
- Solid Oxide Fuel Cells
- Fuel Cells and hydrogen
Fingerprint
Dive into the research topics of 'Quantitative data analysis methods for 3D microstructure characterization of Solid Oxide Cells'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Automatic Quantitative Image Analysis of 3D Micrographs
Jørgensen, P. S. (PhD Student), Larsen, R. (Main Supervisor), Hansen, K. V. (Supervisor), Bærentzen, J. A. (Examiner), Barnett, S. (Examiner) & Østergaard, L. R. (Examiner)
01/03/2007 → 22/09/2010
Project: PhD