Abstract
As described in the previous chapters, optical tweezers have become a tool of precision for in vitro single-molecule investigations, where the single molecule of interest most often is studied in purified form in an experimental assay with a well-controlled fluidic environment. A well-controlled fluidic environment implies that the physical properties of the liquid, most notably the viscosity, are known and the fluidic environment can, for calibrational purposes, be treated as a simple liquid.
In vivo, however, optical tweezers have primarily been used as a tool of manipulation and not so often for precise quantitative force measurements, due to the unknown value of the spring constant of the optical trap formed within the cell’s viscoelastic cytoplasm.Here, we describe amethod for utilizing optical tweezers for quantitative in vivo force measurements. The experimental protocol and the protocol for data analysis rely on two types of experiments, passive observation of the thermal motion of a trapped object inside a living cell, followed by observations of the response of the trapped object when subject to controlled oscillations of the optical trap. One advantage of this calibration method is that the size and refractive properties of the trapped object and the viscoelastic properties of its environment need not be known. We explain the protocol and demonstrate its use with experiments of trapped granules inside live S.pombe cells.
In vivo, however, optical tweezers have primarily been used as a tool of manipulation and not so often for precise quantitative force measurements, due to the unknown value of the spring constant of the optical trap formed within the cell’s viscoelastic cytoplasm.Here, we describe amethod for utilizing optical tweezers for quantitative in vivo force measurements. The experimental protocol and the protocol for data analysis rely on two types of experiments, passive observation of the thermal motion of a trapped object inside a living cell, followed by observations of the response of the trapped object when subject to controlled oscillations of the optical trap. One advantage of this calibration method is that the size and refractive properties of the trapped object and the viscoelastic properties of its environment need not be known. We explain the protocol and demonstrate its use with experiments of trapped granules inside live S.pombe cells.
Original language | English |
---|---|
Title of host publication | Optical Tweezers: Methods and Protocols |
Editors | Arne Gennerich |
Number of pages | 24 |
Publication date | 2017 |
Pages | 513-536 |
Chapter | 20 |
ISBN (Print) | 978-1493964192 |
DOIs | |
Publication status | Published - 2017 |
Series | Methods in Molecular Biology |
---|---|
Volume | 1486 |
ISSN | 1064-3745 |
Keywords
- Optical Tweezers
- Viscoelasticity
- Cytoplasm
- In Vivo
- Force measurements
- Spring constant