Abstract
A novel measurement system provides determination of pump induced phase shifts in erbium doped fibers with an accuracy of ~π/20. Using this system, a systematical analysis of the pump induced modulation of the refractive index and dispersions for a signal at 1550 nm and a pump at 980 nm is reported. The analysis contains measurements of pump induced refractive index changes as function of wavelength, pump power, and doping concentration. A model taking account of the contribution to the refractive index changes from optical transitions between 4 I15/2 states and 4I13/2 states in Er3+ yields good agreement to experimental results apart from a wavelength independent offset. The offset is interpreted to originate from high energetic optical transitions. The results show that for a large refractive index modulation, a short and highly doped fiber should be used with limited amplified spontaneous emission effect. In optical communication systems comprising erbium doped fiber amplifiers, a tradeoff between dispersion and amplification must be made
Original language | English |
---|---|
Journal | Journal of Lightwave Technology |
Volume | 14 |
Issue number | 5 |
Pages (from-to) | 732-738 |
ISSN | 0733-8724 |
DOIs | |
Publication status | Published - 1996 |