Pseudodifferential Perturbations and Stabilization of Distributed Parameter Systems: Dirichlet Feedback Control Problems

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

The stabilization problems for parabolic and hyperbolic partial differential equations with Dirichlet boundary condition are considered. The systems are stabilized by a boundary feedback in(1) The operator equation,(2) The boundary condition,(3) Both the operator equation and the boundary condition;the existence of feedback semigroups in these cases is also proved. The main tool in the investigation is a pseudodifferential transformation that transforms the domains of the feedback semigroup generators into classical operator domains, where a direct resolvent analysis can be employed. The transformation turns out to be a shortcut to some of the stabilization results of Lasiecka and Triggiani in [J. Differential Equations, 47 (1983), pp. 245-272], [SIAM J. Control Optim., 21(1983), pp. 766-802], and [Appl. Math. Optim., 8(1981), pp. 1-37], and it illuminates to some extent how a change of boundary condition influences the systems.
Original languageEnglish
JournalS I A M Journal on Control and Optimization
Volume29
Issue number1
Pages (from-to)222-252
ISSN0363-0129
DOIs
Publication statusPublished - 1991

Fingerprint

Dive into the research topics of 'Pseudodifferential Perturbations and Stabilization of Distributed Parameter Systems: Dirichlet Feedback Control Problems'. Together they form a unique fingerprint.

Cite this