Protein purification using magnetic adsorbent particles

M Franzreb, M. Siemann-Herzberg, Timothy John Hobley, O.R.T. Thomas

    Research output: Contribution to journalJournal articleResearchpeer-review

    Abstract

    The application of functionalised magnetic adsorbent particles in combination with magnetic separation techniques has received considerable attention in recent years. The magnetically responsive nature of such adsorbent particles permits their selective manipulation and separation in the presence of other suspended solids. Thus, it becomes possible to magnetically separate selected target species directly out of crude biological process liquors (e.g. fermentation broths, cell disruptates, plasma, milk, whey and plant extracts) simply by binding them on magnetic adsorbents before application of a magnetic field. By using magnetic separation in this way, the several stages of sample pretreatment (especially centrifugation, filtration and membrane separation) that are normally necessary to condition an extract before its application on packed bed chromatography columns, may be eliminated. Magnetic separations are fast, gentle, scaleable, easily automated, can achieve separations that would be impossible or impractical to achieve by other techniques, and have demonstrated credibility in a wide range of disciplines, including minerals processing, wastewater treatment, molecular biology, cell sorting and clinical diagnostics. However, despite the highly attractive qualities of magnetic methods on a process scale, with the exception of wastewater treatment, few attempts to scale up magnetic operations in biotechnology have been reported thus far. The purpose of this review is to summarise the current state of development of protein separation using magnetic adsorbent particles and identify the obstacles that must be overcome if protein purification with magnetic adsorbent particles is to find its way into industrial practice.
    Original languageEnglish
    JournalApplied Microbiology and Biotechnology
    Volume70
    Issue number5
    Pages (from-to)505-516
    ISSN0175-7598
    DOIs
    Publication statusPublished - 2006

    Cite this