Protecting the piglet gut microbiota against ETEC-mediated post-weaning diarrhoea using specific binding proteins

Timothy Patrick Jenkins, Norbert Ács, Emma Wenzel Arendrup, Abbie Swift, Ágnes Duzs, Ioanna Chatzigiannidou, Michael Pichler, Tiia Kittilä, Laura Peachey, Lone Gram, Nuria Canibe, Andreas Hougaard Laustsen*, Susanne Brix*, Sandra Wingaard Thrane*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

53 Downloads (Pure)

Abstract

Post-weaning diarrhoea (PWD) in piglets presents a widespread problem in industrial pig production and is often caused by enterotoxigenic E. coli (ETEC) strains. Current solutions, such as antibiotics and medicinal zinc oxide, are unsustainable and are increasingly being prohibited, resulting in a dire need for novel solutions. Thus, in this study, we propose and evaluate a protein-based feed additive, comprising two bivalent heavy chain variable domain (VHH) constructs (VHH-(GGGGS)3-VHH, BL1.2 and BL2.2) as an alternative solution to manage PWD. We demonstrate in vitro that these constructs bind to ETEC toxins and fimbriae, whilst they do no affect bacterial growth rate. Furthermore, in a pig study, we show that oral administration of these constructs after ETEC challenge reduced ETEC proliferation when compared to challenged control piglets (1-2 log10 units difference in gene copies and bacterial count/g faeces across day 2-7) and resulted in week 1 enrichment of three bacterial families (Prevotellaceae (estimate: 1.12 ± 0.25, q = 0.0054), Lactobacillaceae (estimate: 2.86 ± 0.52, q = 0.0012), and Ruminococcaceae (estimate: 0.66 ± 0.18, q = 0.049)) within the gut microbiota that appeared later in challenged control piglets, thus pointing to an earlier transition towards a more mature gut microbiota. These data suggest that such VHH constructs may find utility in industrial pig production as a feed additive for tackling ETEC and reducing the risk of PWD in piglet populations.
Original languageEnglish
Article number42
Journalnpj Biofilms and Microbiomes
Volume10
Number of pages15
ISSN2055-5008
DOIs
Publication statusPublished - 2024

Fingerprint

Dive into the research topics of 'Protecting the piglet gut microbiota against ETEC-mediated post-weaning diarrhoea using specific binding proteins'. Together they form a unique fingerprint.

Cite this