Production of zosteric acid and other sulfated phenolic biochemicals in microbial cell factories

Christian Bille Jendresen*, Alex Toftgaard Nielsen

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

177 Downloads (Pure)


Biological production and application of a range of organic compounds is hindered by their limited solubility and toxicity. This work describes a process for functionalization of phenolic compounds that increases solubility and decreases toxicity. We achieve this by screening a wide range of sulfotransferases for their activity towards a range of compounds, including the antioxidant resveratrol. We demonstrate how to engineer cell factories for efficiently creating sulfate esters of phenolic compounds through the use of sulfotransferases and by optimization of sulfate uptake and sulfate nucleotide pathways leading to the 3′-phosphoadenosine 5′-phosphosulfate precursor (PAPS). As an example we produce the antifouling agent zosteric acid, which is the sulfate ester of p-coumaric acid, reaching a titer of 5 g L−1 in fed-batch fermentation. The described approach enables production of sulfate esters that are expected to provide new properties and functionalities to a wide range of application areas.
Original languageEnglish
Article number4071
JournalNature Communications
Publication statusPublished - 2019

Fingerprint Dive into the research topics of 'Production of zosteric acid and other sulfated phenolic biochemicals in microbial cell factories'. Together they form a unique fingerprint.

Cite this