Production of the Bioactive Compounds Violacein and Indolmycin Is Conditional in a maeA Mutant of Pseudoalteromonas luteoviolacea S4054 Lacking the Malic Enzyme

Production of the Bioactive Compounds Violacein and Indolmycin Is Conditional in a maeA Mutant of Pseudoalteromonas luteoviolacea S4054 Lacking the Malic Enzyme

It has previously been reported that some strains of the marine bacterium Pseudoalteromonas luteoviolacea produce the purple bioactive pigment violacein as well as the antibiotic compound indolmycin, hitherto only found in Streptomyces. The purpose of the present study was to determine the relative role of each of these two compounds as antibacterial compounds in P. luteoviolacea S4054. Using Tn10 transposon mutagenesis, a mutant strain that was significantly reduced in violacein production in mannose-containing substrates was created. Full genome analyses revealed that the viola-biosynthetic gene cluster was not interrupted by the transposon; instead the insertion was located to the maeA gene encoding the malic enzyme. Supernatant of the mutant strain inhibited Vibrio anguillarum and Staphylococcus aureus in well diffusion assays and in MIC assays at the same level as the wild type strain. The mutant strain killed V. anguillarum in co-culture experiments as efficiently as the wild type. Using UHPLC-UV/Vis analyses, we quantified violacein and indolmycin, and the mutant strain only produced 7-10% the amount of violacein compared to the wild type strain. In contrast, the amount of indolmycin produced by the mutant strain was about 300% that of the wild type. Since inhibition of V. anguillarum and S. aureus by the mutant strain was similar to that of the wild type, it is concluded that violacein is not the major antibacterial compound in P. luteoviolacea. We furthermore propose that production of violacein and indolmycin may be metabolically linked and that yet unidentified antibacterial compound(s) may be play a role in the antibacterial activity of P. luteoviolacea.

General information
Publication status: Published
Organisations: Department of Systems Biology, Bacterial Ecophysiology and Biotechnology, Metabolic Signaling and Regulation, Metabolomics Platform, Technical University of Denmark, German Center for Infection Research
Contributors: Schmidt Thøgersen, M., Delpin, M., Melchiorsen, J., Kilstrup, M., Månsson, M., Bunk, B., Spröer, C., Overmann, J., Nielsen, K. F., Gram, L.
Number of pages: 11
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Frontiers in Microbiology
Volume: 7
Article number: 1461
ISSN (Print): 1664-302X
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.16 SJR 1.759 SNIP 1.175
Web of Science (2016): Impact factor 4.076
Web of Science (2016): Indexed yes
Original language: English
Keywords: Pseudoalteromonas luteoviolacea, Antibacterial activity, Conditional expression, Indolmycin, Violacein
Electronic versions:
Production_of_the_Bioactive_Compounds_Violacein_and_Indolmycin_Is_Conditional_in_a_maeA_Mutant_of_Pseudoalteromonas_luteoviolacea_S4054_Lacking_the_Malic_Enzyme.pdf
DOIs:
10.3389/fmicb.2016.01461

Bibliographical note
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Source: FindIt
Source ID: 2348416170
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review