Production of neutralizing antisera against viral hemorrhagic septicemia (VHS) virus by intravenous injections of rabbits

    Research output: Contribution to journalJournal articleResearchpeer-review


    Rabbit antisera against viral hemorrhagic septicemia virus (VHSV) produced by two immunization procedures were compared for neutralization and immunochemical properties against homologous and heterologous strains. The VHSV isolate used as the immunogen was a member of a serogroup not neutralized by previously available antisera. The results from this study suggested that frequent intravenous (IV) injections of rabbits with viral antigens were superior to adjuvant-mediated, combined subcutaneous and intraperitoneal (SC/IP) injections for the production of neutralizing antisera. All IV injected rabbits produced high neutralization titers against the homologous VHSV isolate but not against an isolate from a different serogroup. The SC/IP injected rabbits had no significant neutralization titers against either the homologous VHSV strain or two isolates of a heterologous VHSV strain. Sera from all injected rabbits reacted in indirect immunofluorescence (IF) assays with either strain; however, the SC/IP injected rabbits produced higher titers against the heterologous VHSV strain by ELISA (enzyme-linked immunosorbent assay). By Western blotting, neutralizing antisera primarily stained the viral glycoprotein (G) whereas the nonneutralizing sera stained all the viral structural proteins equally well. Our results demonstrate that immunization procedures to produce antisera against VHSV in rabbits determine whether the resultant antibodies will have primarily neutralizing or binding capabilities.
    Original languageEnglish
    JournalJournal of Aquatic Animal Health
    Issue number1
    Pages (from-to)10-16
    Publication statusPublished - 1999


    Dive into the research topics of 'Production of neutralizing antisera against viral hemorrhagic septicemia (VHS) virus by intravenous injections of rabbits'. Together they form a unique fingerprint.

    Cite this