TY - JOUR
T1 - Probing the Active Sites of MoS2 BasedHydrotreating Catalysts Using Modulation Excitation Spectroscopy
AU - Gaur, Abhijeet
AU - Dabros, Trine Marie Hartmann
AU - Høj, Martin
AU - Boubnov, Alexey
AU - Prüssmann, Tim
AU - Jelic, Jelena
AU - Studt, Felix
AU - Jensen, Anker Degn
AU - Grunwaldt, Jan-Dierk
PY - 2019
Y1 - 2019
N2 - The reactive surface sites of MoS2 hydrotreating catalysts (unpromoted as well as Co- and Ni-promoted) supported on MgAl2O4 spinel were investigated with respect to the substitution of sulfur by oxygen using in situ XAS coupled with modulation excitation spectroscopy (MES). Specifically, MES experiments were carried out by periodically cycling between a H2O and H2S containing hydrogen gas mixture at 400 °C. Due to the low fraction of S–O exchange, conventional XANES and EXAFS data hardly showed any changes when these catalysts were exposed to increasing ratios of H2O to H2S in an H2 atmosphere. XANES and EXAFS data extracted at the Mo K-edge by MES analysis showed that for approximately 1% of the Mo atoms, sulfur atoms are replaced by oxygen atoms when exposed to H2O, causing partial oxidation of these active sites. The reaction is reversible and Mo returns to its initial sulfide phase when H2O is removed and H2S is supplied in the feed. In the case of Co- and Ni-promoted catalysts, the magnitude of S–O exchange was found to be reduced, indicating the beneficial effect of promotion. MES at the Ni K-edge showed that Ni was oxidized during H2O exposure, which in turn delayed the Mo oxidation in the Ni-promoted catalyst. The structures of these catalysts under S–O exchange were modeled using density functional theory (DFT) calculations, showing that the edge atoms are affected strongly. For all three catalysts, OH substitution is more favorable, while O substitution could be possible at high H2O pressure for unpromoted MoS2. Mo K-edge XANES spectra calculated using these simulated structures support the results obtained from the MES experiments. The presented approach using MES in combination with XAS and supported by DFT can be extended in general to catalysts under operando conditions and is thus a useful tool for determination of the active site on an atomic-scale.
AB - The reactive surface sites of MoS2 hydrotreating catalysts (unpromoted as well as Co- and Ni-promoted) supported on MgAl2O4 spinel were investigated with respect to the substitution of sulfur by oxygen using in situ XAS coupled with modulation excitation spectroscopy (MES). Specifically, MES experiments were carried out by periodically cycling between a H2O and H2S containing hydrogen gas mixture at 400 °C. Due to the low fraction of S–O exchange, conventional XANES and EXAFS data hardly showed any changes when these catalysts were exposed to increasing ratios of H2O to H2S in an H2 atmosphere. XANES and EXAFS data extracted at the Mo K-edge by MES analysis showed that for approximately 1% of the Mo atoms, sulfur atoms are replaced by oxygen atoms when exposed to H2O, causing partial oxidation of these active sites. The reaction is reversible and Mo returns to its initial sulfide phase when H2O is removed and H2S is supplied in the feed. In the case of Co- and Ni-promoted catalysts, the magnitude of S–O exchange was found to be reduced, indicating the beneficial effect of promotion. MES at the Ni K-edge showed that Ni was oxidized during H2O exposure, which in turn delayed the Mo oxidation in the Ni-promoted catalyst. The structures of these catalysts under S–O exchange were modeled using density functional theory (DFT) calculations, showing that the edge atoms are affected strongly. For all three catalysts, OH substitution is more favorable, while O substitution could be possible at high H2O pressure for unpromoted MoS2. Mo K-edge XANES spectra calculated using these simulated structures support the results obtained from the MES experiments. The presented approach using MES in combination with XAS and supported by DFT can be extended in general to catalysts under operando conditions and is thus a useful tool for determination of the active site on an atomic-scale.
KW - X-ray absorption spectroscopy
KW - Modulation excitation spectroscopy
KW - Hydrotreating
KW - Ni/Co-promoted MoS2
KW - Phase sensitive detection
KW - S−O exchange
U2 - 10.1021/acscatal.8b04778
DO - 10.1021/acscatal.8b04778
M3 - Journal article
SN - 2155-5435
VL - 9
SP - 2568
EP - 2579
JO - ACS Catalysis
JF - ACS Catalysis
IS - 3
ER -