Probing metastable Sm$^{2+}$ and optically stimulated tunnelling emission in YPO$_4$: Ce, Sm

When the model dosimetry system YPO$_4$: Ce$^{3+}$, Sm$^{3+}$ is exposed to X-rays, the charge state of the dopants changes, becoming Ce$^{4+}$ and Sm$^{2+}$ via hole and electron trapping, respectively which are metastable; the original charge states can be achieved through electron transfer back from Sm$^{2+}$ to Ce$^{4+}$ via optical stimulation. The work presented here adds further details to the energy levels of the metastable Sm$^{2+}$ defect and the electron transfer processes by undertaking measurements of a) Sm$^{2+}$ excitation spectrum through the internal 7D$_{0} \rightarrow ^{7}F_{2}$ emission at 7 K, b) relaxation lifetime of Sm$^{2+}$ (7D$_{0}$ state) and its temperature dependence to provide insights into thermal quenching, and c) the kinetics of localised recombination from Sm$^{2+}$ to Ce$^{4+}$ on nanoseconds to seconds time scales using sub-band-edge excitation.

General information
Publication status: Published
Organisations: Center for Nuclear Technologies, Radiation Physics
Contributors: Prasad, A. K., Kook, M. H., Jain, M.
Pages: 61-66
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Radiation Measurements
Volume: 106
ISSN (Print): 1350-4487
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.33 SJR 0.509 SNIP 1.094
Web of Science (2017): Impact factor 1.369
Web of Science (2017): Indexed yes
Original language: English
Keywords: Excited-state tunnelling, Localised recombination, Low temperature spectroscopy, Radio-photoluminescence, Sm$^{2+}$ and Ce$^{3+}$ relaxation lifetime, Thermal quenching
Electronic versions:
DOIs:
10.1016/j.radmeas.2016.11.012
Source: FindIt
Source-ID: 2349360418
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review