Abstract
Probabilistic design of wind turbines requires definition of the structural elements to be included in the probabilistic basis: e.g., blades, tower, foundation; identification of important failure modes; careful stochastic modeling of the uncertain parameters; recommendations for target reliability levels and recommendation for consideration of system aspects. The uncertainties are characterized as aleatoric (physical uncertainty) or epistemic (statistical, measurement and model uncertainties). Methods for uncertainty modeling consistent with methods for estimating the reliability are described. It is described how uncertainties in wind turbine design related to computational models, statistical data from test specimens, results from a few full-scale tests and from prototype wind turbines can be accounted for using the Maximum Likelihood Method and a Bayesian approach. Assessment of the optimal reliability level by cost-benefit optimization is illustrated by an offshore wind turbine example. Uncertainty modeling is illustrated by an example where physical, statistical and model uncertainties are estimated.
Original language | English |
---|---|
Journal | Energies |
Volume | 3 |
Issue number | 2 |
Pages (from-to) | 241-257 |
ISSN | 1996-1073 |
DOIs | |
Publication status | Published - 2010 |
Bibliographical note
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).Keywords
- Wind turbine structures
- Wind energy