Printed organic smart devices characterized by ultra-short laser pulses

Francesco Pastorelli

Research output: Contribution to conferenceConference abstract for conferenceResearchpeer-review

Abstract

Resume: In this study, we demonstrate that nonlinear optical microscopy is a promising technique to characterize organic printed electronics. Using ultrashort laser pulses we stimulate two-photon absorption in a roll coated polymer semiconductor and map the resulting two-photon induced photoluminescence (TPPL) and second harmonic response. First, we show that the different nonlinear optical signals can be used to discriminate between the polymer semiconductor material and embedded nanoparticles which constitute the electrode in a real device. Next we demonstrate that the TPPL quenches when applying a current between source and drain; this decrease can be used to determine the electrical characteristic of the device. Finally, we show that the TPPL increases with higher temperature in the 20 - 120 °C range, closely following the supported current characteristics of the semiconductor. We propose that the TPPL is a good indicator to map and monitor the charge carrier density and the molecular packing of the printed polymer material. Importantly, simple calculations based on the signal levels, suggest that this technique can be extended to the real time mapping of the polymer semiconductor film, even during the printing process, in which the high printing speed poses the need for equally high acquisition rates.
Original languageEnglish
Publication date2017
Number of pages1
Publication statusPublished - 2017
EventE-MRS Spring Meeting 2017 - Strasbourg Convention Centre , Stasbourg, France
Duration: 22 May 201726 May 2017
http://www.european-mrs.com/meetings/2017-spring-meeting

Conference

ConferenceE-MRS Spring Meeting 2017
LocationStrasbourg Convention Centre
Country/TerritoryFrance
CityStasbourg
Period22/05/201726/05/2017
Internet address

Bibliographical note

SYMPOSIUM X: New frontiers in laser interaction: from hard coatings to smart materials (abstract X.10.5)

Fingerprint

Dive into the research topics of 'Printed organic smart devices characterized by ultra-short laser pulses'. Together they form a unique fingerprint.

Cite this