Preparing mono-dispersed liquid core PDMS microcapsules from thiol–ene–epoxy-tailored flow-focusing microfluidic devices

An applied dual-cure system based on thiol–ene and thiol–epoxy “click chemistry” reactions was proved to be an extremely effective and easy to use tool for preparing microfluidic chips, thereby allowing for precise control over material properties and providing the possibility of covalently bonding chip wafers. Different thiol–ene–epoxy-based polymer compositions were tested with the help of DSC and ATR FTIR, in order to investigate their physical and chemical properties. Water contact angles were determined, thus verifying the high efficiency and selectivity of the chemical surface modification of compositions in relation to high hydrophilicity and hydrophobicity. An obtained microfluidic device was subsequently used in order to produce PDMS microcapsules of very narrow size distribution and which contained various common liquids, such as water and ethanol, as well as an ionic liquid 2-hydroxyethylammonium formate.

General information
Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, The Danish Polymer Centre, Department of Micro- and Nanotechnology
Contributors: Mazurek, P. S., Daugaard, A. E., Skolimowski, M., Hvilsted, S., Skov, A. L.
Pages: 15379-15386
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: R S C Advances
Volume: 2015
Issue number: 5
ISSN (Print): 2046-2069
Ratings:
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.42 SJR 0.947 SNIP 0.834
Web of Science (2015): Impact factor 3.289
Web of Science (2015): Indexed yes
Original language: English
Electronic versions:
RSC_OA_c4ra16255b.pdf
DOIs:
10.1039/C4RA16255B

Bibliographical note
This article is published Open Access as part of the RSC’s Gold for Gold initiative, licensed under a Creative Commons Attribution 3.0 Unported Licence.
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review