Preparation of high crystalline nanoparticles of rare-earth based complex pervoskites and comparison of their structural and magnetic properties with bulk counterparts: Paper

M. A. Basith, M. A. Islam, Bashir Ahmmad, M. D. Sarowar Hossain, Kristian Mølhave

    Research output: Contribution to journalJournal articleResearchpeer-review

    Abstract

    A simple route to prepare Gd0.7Sr0.3MnO3 nanoparticles by ultrasonication of their bulk powder materials is presented in this article. For comparison, Gd0.7Sr0.3MnO3 nanoparticles are also prepared by ball milling. The prepared samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscope (XPS), and superconducting quantum interference device (SQUID) magnetometer. XRD Rietveld analysis is carried out extensively for the determination of crystallographic parameters and the amount of crystalline and amorphous phases. FESEM images demonstrate the formation of nanoparticles with average particle size in the range of 50–100 nm for both ultrasonication and 4 h (h) of ball milling. The bulk materials and nanoparticles synthesized by both ultrasonication and 4 h ball milling exhibit a paramagnetic to spin-glass transition. However, nanoparticles synthesized by 8 h and 12 h ball milling do not reveal any phase transition, rather show an upturn of magnetization at low temperature. The degradation of the magnetic properties in ball milled nanoparticles may be associated with amorphization of the nanoparticles due to ball milling particularly for milling time exceeding 8 h. This investigation demonstrates the potential of ultrasonication as a simple route to prepare high crystalline rare-earth based manganite nanoparticles with improved control compared to the traditional ball milling technique.
    Original languageEnglish
    JournalMaterials Research Express
    Volume4
    Issue number7
    Number of pages11
    ISSN2053-1591
    DOIs
    Publication statusPublished - 2017

    Keywords

    • Rare-earth manganites
    • Manganite nanoparticles
    • Synthesis
    • Structural Analysis
    • Magnetic Properties

    Fingerprint Dive into the research topics of 'Preparation of high crystalline nanoparticles of rare-earth based complex pervoskites and comparison of their structural and magnetic properties with bulk counterparts: Paper'. Together they form a unique fingerprint.

    Cite this