TY - JOUR
T1 - Preliminary treatment of MSW fly ash as a way of improving electrodialytic remediation
AU - Ferreira, Célia Maria Dias
AU - Jensen, Pernille Erland
AU - Ottosen, Lisbeth M.
AU - Ribeiro, Alexandra
PY - 2008
Y1 - 2008
N2 - In the current work electrodialytic remediation (EDR) was applied to remove heavy metals from municipal solid waste (MSW) fly ash, a hazardous waste collected during flue gas treatment. Tests were conducted to evaluate if EDR could be improved by introducing a preliminary treatment in which very soluble salts were removed. Three different preliminary treatments were conducted with different L:S ratios and pH. Treatment in which metal release and L/S ratio were lower was selected for EDR. Electrodialytic remediation was performed at a constant current of 38 mA, for 14 days, using gluconate as a solubilisation enhancement agent. Conductivity and pH were monitored and electrolyte samples were collected every 4 days to evaluate metal release over time. It was found that the preliminary treatment reduces fouling of the ion-exchange membranes used in EDR and drastically increases the removal of metals. Remediation time was also considerably reduced. Additionally, preliminary washing reduces energy consumption during EDR, since electric current is not wasted in the transport of soluble salts. Sequential extraction was performed in the untreated and treated samples to help identify how metals are bond to the fly ash. It was seen that at the end metals are mainly found in the strongly bonded and residual phases. This indicates that the combined treatment (washing + EDR) is successful in reducing the environmental risk posed by fly ash.
AB - In the current work electrodialytic remediation (EDR) was applied to remove heavy metals from municipal solid waste (MSW) fly ash, a hazardous waste collected during flue gas treatment. Tests were conducted to evaluate if EDR could be improved by introducing a preliminary treatment in which very soluble salts were removed. Three different preliminary treatments were conducted with different L:S ratios and pH. Treatment in which metal release and L/S ratio were lower was selected for EDR. Electrodialytic remediation was performed at a constant current of 38 mA, for 14 days, using gluconate as a solubilisation enhancement agent. Conductivity and pH were monitored and electrolyte samples were collected every 4 days to evaluate metal release over time. It was found that the preliminary treatment reduces fouling of the ion-exchange membranes used in EDR and drastically increases the removal of metals. Remediation time was also considerably reduced. Additionally, preliminary washing reduces energy consumption during EDR, since electric current is not wasted in the transport of soluble salts. Sequential extraction was performed in the untreated and treated samples to help identify how metals are bond to the fly ash. It was seen that at the end metals are mainly found in the strongly bonded and residual phases. This indicates that the combined treatment (washing + EDR) is successful in reducing the environmental risk posed by fly ash.
U2 - 10.1080/10934520801974319
DO - 10.1080/10934520801974319
M3 - Journal article
SN - 1093-4529
VL - 43
SP - 837
EP - 843
JO - Journal of Environmental Science and Health. Part A: Toxic Hazardous Substances and Environmental Engineering
JF - Journal of Environmental Science and Health. Part A: Toxic Hazardous Substances and Environmental Engineering
IS - 8
ER -