Prediction of Pectin Yield and Quality by FTIR and Carbohydrate Microarray Analysis

Prediction of Pectin Yield and Quality by FTIR and Carbohydrate Microarray Analysis

Pectin production is complex, and final product quality assessment is generally accomplished at the end of the process using time-consuming off-line laboratory analysis. In this study, pectin was extracted from lime peel either by acid or by enzymes. Fourier transform infrared spectroscopy and carbohydrate microarray analysis were performed directly on the crude lime peel extracts during the time course of the extractions. Multivariate analysis of the data was carried out to predict final pectin yields. Fourier transform infrared spectroscopy (FTIR) was found applicable for determining the optimal extraction time for the enzymatic and acidic extraction processes, respectively. The combined results of FTIR and carbohydrate microarray analysis suggested major differences in the crude pectin extracts obtained by enzymatic and acid extraction, respectively. Enzymatically extracted pectin, thus, showed a higher degree of esterification (DE 82 %) than pectin extracted by acid (DE 67 %) and was moreover found to be more heterogeneously esterified when probed with the monoclonal antibodies JIM5, JIM7, and LM20. The data infer that enzymatic pectin extraction allows for extraction of complex, high DE pectin, and that FTIR and carbohydrate microarray analysis have potential to be developed into online process analysis tools for prediction of pectin extraction yields and pectin features from measurements on crude pectin extracts.

General information
Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, Center for BioProcess Engineering, University of Copenhagen, DuPont Denmark, FOSS A/S
Number of pages: 12
Pages: 143–154
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Food and Bioprocess Technology
Volume: 10
Issue number: 1
ISSN (Print): 1935-5130
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.14 SJR 1.29 SNIP 1.244
Web of Science (2017): Impact factor 2.998
Web of Science (2017): Indexed yes
Original language: English
Keywords: Antibodies, Chemometrics, Enzymatic extraction, Multivariate analysis, Online monitoring, PLS
DOIs: 10.1007/s11947-016-1802-2
Source: FindIt
Source ID: 2345705796
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review