Predicting Transdermal Uptake of Phthalates and a Paraben from Cosmetic Cream Using the Measured Fugacity

Azin Eftekhari, Hanne Frederiksen, Anna Maria Andersson, Charles J. Weschler, Glenn Morrison*

*Corresponding author for this work

    Research output: Contribution to journalJournal articleResearchpeer-review

    117 Downloads (Pure)

    Abstract

    Transdermal uptake models compliment in vitro and in vivo experiments in assessing risk of environmental exposures to semivolatile organic compounds (SVOCs). A key parameter for mechanistic models is the chemical driving force for mass transfer from environmental media to human skin. In this research, we measure this driving force in the form of fugacity for chemicals in cosmetic cream and use it to model uptake from cosmetics as a surrogate for condensed environmental media. A simple cosmetic cream, containing no target analytes, was mixed with diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), and butyl paraben (BP) and diluted to make creams with concentrations ranging from 0.025% to 6%. The fugacity, relative to the pure compound, was measured using solid-phase micro extraction (SPME). We found that the relationship between the concentration and fugacity is highly nonlinear. The relative fugacity of the chemicals for a 2% w/w formulation was used in a diffusion-based model to predict transdermal uptake of each chemical and was compared with excretion data from a prior human subject study with the same formulation. Dynamic simulations of excretion are generally consistent with the results of the human subject experiment but sensitive to the input parameters, especially the time between cream application and showering.
    Original languageEnglish
    JournalEnvironmental Science and Technology
    Volume54
    Issue number12
    Pages (from-to)7471-7484
    ISSN0013-936X
    DOIs
    Publication statusPublished - 2020

    Fingerprint

    Dive into the research topics of 'Predicting Transdermal Uptake of Phthalates and a Paraben from Cosmetic Cream Using the Measured Fugacity'. Together they form a unique fingerprint.

    Cite this