Predicting the Influence of Surface Protuberance on the Aerodynamic Characteristics of a NACA 633-418 - DTU Orbit (02/11/2019)

Predicting the Influence of Surface Protuberance on the Aerodynamic Characteristics of a NACA 633-418: Paper

Leading Edge Roughness (LER) has become a critical challenge for wind turbine operators, often reducing the energy production of their turbines. LER has not yet been systematically categorized, and the transfer function between height/extent of roughness and the aerodynamic performance has not been established. A common method for emulating LER is to use zigzag tape or distributed sand grain roughness in a wind tunnel. This paper contains 2D and 3D CFD simulations and wind tunnel tests with zigzag tape on a NACA 633-418 airfoil, to evaluate the changes in aerodynamic characteristics. Because 3D CFD requires a vast amount of computing power, it is investigated if 2D simulation gives a sufficient level of accuracy.

General information
Publication status: Published
Organisations: Department of Wind Energy, Aerodynamic design, Power Curve ApS
Corresponding author: Kruse, E. K.
Contributors: Kruse, E. K., Sørensen, N. N., Bak, C.
Number of pages: 10
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Physics: Conference Series
Volume: 1037
Issue number: 2
Article number: 022008
ISSN (Print): 1742-6596
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 0.51 SJR 0.221 SNIP 0.454
Original language: English
Electronic versions:
DOIs:
10.1088/1742-6596/1037/2/022008

Bibliographical note
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Source: FindIt
Source ID: 2435911120
Research output: Contribution to journal › Conference article – Annual report year: 2018 › Research › peer-review