Precise Estimation of Intravascular Pressure Gradients

Lars Emil Haslund*, Lasse Thurmann Jørgensen, Matthias Bo Stuart, Marie Sand Traberg, Jørgen Arendt Jensen

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

87 Downloads (Pure)


This study presents a method for noninvasive pressure gradient estimation, which allows the detection of small pressure differences with higher precision compared to invasive catheters. It combines a new method for estimating the temporal acceleration of the flowing blood with the Navier–Stokes equation. The acceleration estimation is based on a double cross-correlation approach, which is hypothesized to minimize the influence of noise. Data are acquired using a 256-element, 6.5-MHz GE L3-12-D linear array transducer connected to a Verasonics research scanner. A synthetic aperture (SA) interleaved sequence with 2 × 12 virtual sources evenly distributed over the aperture and permuted in emission order is used in combination with recursive imaging. This enables a temporal resolution between correlation frames equal to the pulse repetition time at a frame rate of half the pulse repetition frequency. The accuracy of the method is evaluated against a computational fluid dynamic simulation. Here, the estimated total pressure difference complies with the CFD reference pressure difference, which yields an R-square of 0.985 and an RMSE of 3.03 Pa. The precision of the method is tested on experimental data, measured on a carotid phantom of the common carotid artery. The volume profile used during measurement was set to mimic flow in the carotid artery with a peak flow rate of 12.9 mL/s. The experimental setup showed that the measured pressure difference changes from −59.4 to 31 Pa throughout a single pulse cycle. This was estimated with a precision of 5.44% (3.22 Pa) across ten pulse cycles. The method was also compared to invasive catheter measurements in a phantom with a 60% cross-sectional area reduction. The ultrasound method detected a maximum pressure difference of 72.3 Pa with a precision of 3.3% (2.22 Pa). The catheters measured a maximum pressure difference of 105 Pa with a precision of 11.2% (11.4 Pa). This was measured over the same constriction and with a peak flow rate of 12.9 mL/s. The double cross-correlation approach revealed no improvement compared to a normal differential operator. The method’s strength, thus, lies primarily in the ultrasound sequence, which allows precise and accurate velocity estimations, at which acceleration and pressure differences can be acquired.
Original languageEnglish
JournalI E E E Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Issue number5
Pages (from-to)393-405
Publication statusPublished - 2023


Dive into the research topics of 'Precise Estimation of Intravascular Pressure Gradients'. Together they form a unique fingerprint.

Cite this