Precipitation pathways for ferrihydrite formation in acidic solutions

Iron oxides and oxyhydroxides form via Fe\(^{3+}\) hydrolysis and polymerization in many aqueous environments, but the pathway from Fe\(^{3+}\) monomers to oligomers and then to solid phase nuclei is unknown. In this work, using combined X-ray, UV-vis, and Mossbauer spectroscopic approaches, we were able to identify and quantify the long-time sought ferric speciation over time during ferric oxyhydroxide formation in partially-neutralized ferric nitrate solutions ([Fe\(^{3+}\)] = 0.2 M, 1.8 < pH < 3). Results demonstrate that Fe exists mainly as Fe(H\(_2\)O)\(_6\)\(^{3+}\), mu-oxo aquo dimers and ferrihydrite, and that with time, the mu-oxo dimer decreases while the other two species increase in their concentrations. No larger Fe oligomers were detected. Given that the structure of the mu-oxo dimer is incompatible with those of all Fe oxides and oxyhydroxides, our results suggest that reconfiguration of the mu-oxo dimer structure occurs prior to further condensation leading up to the nucleation of ferrihydrite. The structural reconfiguration is likely the rate-limiting step involved in the nucleation process.

General information
Publication status: Published
Organisations: Department of Physics, Neutrons and X-rays for Materials Physics, University of Wyoming, University of Delaware, University of California at Berkeley, Lawrence Berkeley National Laboratory
Number of pages: 18
Pages: 247-264
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Geochimica Et Cosmochimica Acta
Volume: 172
ISSN (Print): 0016-7037
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.42
Web of Science (2016): Impact factor 4.609
Web of Science (2016): Indexed yes
Original language: English
DOIs:
10.1016/j.gca.2015.09.015
Source: Findit
Source-ID: 2286857402
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review