Polynomial weights and code constructions

J Massey, D Costello, Jørn Justesen

    Research output: Contribution to journalJournal articleResearchpeer-review

    742 Downloads (Pure)

    Abstract

    For any nonzero elementcof a general finite fieldGF(q), it is shown that the polynomials(x - c)^i, i = 0,1,2,cdots, have the "weight-retaining" property that any linear combination of these polynomials with coefficients inGF(q)has Hamming weight at least as great as that of the minimum degree polynomial included. This fundamental property is then used as the key to a variety of code constructions including 1) a simplified derivation of the binary Reed-Muller codes and, for any primepgreater than 2, a new extensive class ofp-ary "Reed-Muller codes," 2) a new class of "repeated-root" cyclic codes that are subcodes of the binary Reed-Muller codes and can be very simply instrumented, 3) a new class of constacyclic codes that are subcodes of thep-ary "Reed-Muller codes," 4) two new classes of binary convolutional codes with large "free distance" derived from known binary cyclic codes, 5) two new classes of long constraint length binary convolutional codes derived from2^r-ary Reed-Solomon codes, and 6) a new class ofq-ary "repeated-root" constacyclic codes with an algebraic decoding algorithm.
    Original languageEnglish
    JournalI E E E Transactions on Information Theory
    Volume19
    Issue number1
    Pages (from-to)101-110
    ISSN0018-9448
    Publication statusPublished - 1973

    Bibliographical note

    Copyright 1973 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

    Fingerprint

    Dive into the research topics of 'Polynomial weights and code constructions'. Together they form a unique fingerprint.

    Cite this