Polymer-filled microcontainers for oral delivery loaded using supercritical impregnation - DTU Orbit (07/10/2019)

Polymer-filled microcontainers for oral delivery loaded using supercritical impregnation

In the last years a large variety of drug delivery systems have been developed to improve bioavailability of therapeutics in oral administration. An increasing interest has arisen in reservoir-based microdevices designed for active ingredients like water insoluble compounds and fragile biomolecules. Such microdevices are designed to protect the active ingredient against degradation and deactivation, and to allow cytoadhesion and unidirectional drug release. There are few works which optimize the drug loading step and often therapeutics are dosed in the microdevices through laborious and time consuming procedures. This work proposes an effective loading technique for a poorly soluble model drug in microcontainers, by combining inkjet printing and supercritical fluid impregnation. Well defined quantities of poly(vinyl pyrrolidone) (PVP) solutions are dispensed into microcontainers by inkjet printing with a quasi-no-waste performance. Then ketoprofen is impregnated in the polymer matrix by using supercritical carbon dioxide (scCO$_2$) as loading medium. The amount of polymer is controlled by the volume and the number of droplets of dispensed polymer and drug loading is tuned by varying the impregnation parameters. Compared to solid dispersions of the same drug and polymer, scCO$_2$-impregnated microcontainers exhibit a more reproducible drug loading and a faster dissolution rate of the active compound which allows drug release to be modulated. The combination of these loading techniques potentially allows the high throughput fabrication of microdevices for oral drug delivery with a safe and solvent-free solution. © 2013 Published by Elsevier B.V.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, University of Copenhagen
Contributors: Marizza, P., Keller, S. S., Müllertz, A., Boisen, A.
Pages: 1-9
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Journal of Controlled Release
Volume: 173
Issue number: 1
ISSN (Print): 0168-3659
Ratings:
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6.86 SJR 2.438 SNIP 2.086
Web of Science (2014): Impact factor 7.705
Web of Science (2014): Indexed yes
Original language: English
Keywords: Biochemistry, Carbon dioxide, Drug delivery, Effluent treatment, Filled polymers, Impregnation, Ink jet printing, Reservoirs (water), Supercritical fluid extraction, Supercritical fluids, Loading
DOIs:
10.1016/j.jconrel.2013.09.022
Source: dtu
Source ID: n:oai:DTIC-ART:compendex/426898052::35226
Research output: Contribution to journal › Journal article – Annual report year: 2013 › Research › peer-review