Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors

We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization.

General information
Publication status: Published
Organisations: Department of Photonics Engineering, Fiber Sensors & Supercontinuum, Medtronic R&D Diabetes Denmark A/S
Contributors: Hassan, H. U., Nielsen, K., Aasmul, S., Bang, O.
Number of pages: 13
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Biomedical Optics Express
Volume: 6
Issue number: 12
ISSN (Print): 2156-7085
Ratings:
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.07 SJR 1.556 SNIP 1.593
Web of Science (2015): Impact factor 3.344
Web of Science (2015): Indexed yes
Original language: English
Electronic versions:
boe_6_12_5008.pdf
DOIs:
10.1364/BOE.6.005008
Source: PublicationPreSubmission
Source ID: 118865504
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review