Polycarbonate mpof-based mach–zehnder interferometer for temperature and strain measurement

Xiaoyu Yue, Haijin Chen, Hang Qu, Rui Min, Getinet Woyessa, Ole Bang, Xuehao Hu*

*Corresponding author for this work

Research output: Contribution to journalLetterResearchpeer-review

14 Downloads (Pure)


In this paper, an endlessly single mode microstructured polymer optical fiber (mPOF) in a Mach–Zehnder (M–Z) interferometer configuration is demonstrated for temperature and strain measurement. Because there is no commercial splicer applied for POF-silica optical fiber (SOF) connectorization, prior to the M–Z interferometric sensing, we introduce an imaging projecting method to align a polycarbonate mPOF to a SOF and then the splice is cured permanently using ultraviolet (UV) glue. A He-Ne laser beam at 632.8 nm coupled in a SOF is divided by a 1 × 2 fiber coupler to propagate in two fiber arms. A piece of mPOF is inserted in one arm for sensing implementation and the interference fringes are monitored by a camera. For non-annealed fiber, the temperature sensitivity is found to be 25.5 fringes/ C for increasing temperature and 20.6 fringes/ C for decreasing temperature. The converted sensitivity per unit length is 135.6 fringes/ C/m for increasing temperature, which is twice as much as the silica fiber, or 852.2 rad/ C/m (optical phase change versus fiber temperature), which is more than four times as much as that for the PMMA fiber. To solve the sensitivity disagreement, the fiber was annealed at 125 C for 36 h. Just after the thermal treatment, the temperature measurement was conducted with sensitivities of 16.8 fringes/ C and 21.3 fringes/ C for increasing and decreasing process, respectively. One month after annealing, the linear response was improved showing a temperature sensitivity of ~20.7 fringes/ C in forward and reverse temperature measurement. For the strain measurement based on non-annealed fiber, the sensitivity was found to be ~1463 fringes/%ε showing repeatable linear response for forward and reverse strain. The fiber axial force sensitivity was calculated to be ~2886 fringes/N, showing a force measurement resolution of ~3.47 × 10−4 N. The sensing methodology adopted in this work shows several advantages, such as very low cost, high sensitivity, a straightforward sensing mechanism, and ease of fabrication.

Original languageEnglish
Article number6643
JournalSensors (Switzerland)
Issue number22
Number of pages11
Publication statusPublished - 2 Nov 2020


  • Butt-coupling
  • Mach-Zehnder interferometer
  • Optical fiber devices
  • Polymer optical fibers
  • Strain
  • Temperature

Fingerprint Dive into the research topics of 'Polycarbonate mpof-based mach–zehnder interferometer for temperature and strain measurement'. Together they form a unique fingerprint.

Cite this