Platform for Controlled Supramolecular Nanoassembly

Ilja Czolkos, Jonas K. Hannestad, Aldo Jesorka, Ravindra Kumar, Tom Brown, Bo Albinsson, Owe Orwar

Research output: Contribution to journalJournal articleResearchpeer-review


We here present a two-dimensional (2D) micro/nano-fluidic technique where reactant-doped liquid−crystal films spread and mix on micro- and nanopatterned substrates. Surface-supported phospholipid monolayers are individually doped with complementary DNA molecules which hybridize when these lipid films mix. Using lipid films to convey reactants reduces the dimensionality of traditional 3D chemistry to 2D, and possibly to 1D by confining the lipid film to nanometer-sized lanes. The hybridization event was observed by FRET using single-molecule-sensitive confocal fluorescence detection. We could successfully detect hybridization in lipid streams on 250 nm wide lanes. Our results show that the number and density of reactants as well as sequence of reactant addition can be controlled within confined liquid crystal films, providing a platform for nanochemistry with potential for kinetic control.
Original languageEnglish
JournalNano Letters
Issue number6
Pages (from-to)2482-2486
Publication statusPublished - 2009
Externally publishedYes

Fingerprint Dive into the research topics of 'Platform for Controlled Supramolecular Nanoassembly'. Together they form a unique fingerprint.

Cite this