Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide

Viktoriia E. Babicheva, Irina V. Kulkova, Radu Malureanu, Kresten Yvind, Andrei V. Lavrinenko

    Research output: Contribution to journalJournal articleResearchpeer-review

    424 Downloads (Pure)


    We investigate plasmonic modulators with a gain material to be implemented as ultra-compact and ultra-fast active nanodevices in photonic integrated circuits. We analyze metal-semiconductor-metal (MSM) waveguides with InGaAsP-based active material layers as ultra-compact plasmonic modulators. The modulation is achieved by changing the gain of the core that results in different transmittance through the waveguides. A MSM waveguide enables high field localization and therefore high modulation speed. Bulk semiconductor, quantum wells and quantum dots, arranged in either horizontal or vertical layout, are considered as the core of the MSM waveguide. Dependences on the waveguide core size and gain values of various active materials are studied. The designs consider also practical aspects like n- and p-doped layers and barriers in order to obtain results as close to reality. The effective propagation constants in the MSM waveguides are calculated numerically. Their changes in the switching process are considered as a figure of merit. We show that a MSM waveguide with electrical current control of the gain incorporates compactness and deep modulation along with a reasonable level of transmittance.
    Original languageEnglish
    JournalPhotonics and Nanostructures - Fundamentals and Applications
    Issue number4
    Pages (from-to)389-399
    Publication statusPublished - 2012
    Event4th International Workshop on Theoretical and Computational Nanophotonics - Bad Honnef, Germany
    Duration: 26 Oct 201128 Oct 2011
    Conference number: 4


    Conference4th International Workshop on Theoretical and Computational Nanophotonics
    CityBad Honnef


    • Surface plasmons
    • Plasmonic waveguides
    • Metal–semiconductor–metal waveguides
    • Modulators
    • Semiconductor optical devices
    • Integrated circuits


    Dive into the research topics of 'Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide'. Together they form a unique fingerprint.

    Cite this