TY - JOUR
T1 - Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method
AU - Murthy, Swathi
AU - Pranov, Henrik
AU - Feidenhans'l, Nikolaj Agentoft
AU - Madsen, Jonas S.
AU - Hansen, Poul Erik
AU - Pedersen, Henrik Chresten
AU - Taboryski, Rafael J.
PY - 2017
Y1 - 2017
N2 - Lab-scale plasmonic color printing using nano-structured and subsequently metallized surfaces have been demonstrated to provide vivid colors. However, upscaling these structures for large area manufacturing is extremely challenging due to the requirement of nanometer precision of metal thickness. In this study, we have investigated a plasmonic color meta-surface design that can be easily upscaled. We have demonstrated the feasibility of fabrication of these plasmonic color surfaces by a high-speed roll-to-roll method, comprising roll-to-roll extrusion coating at 10 m min-1 creating a polymer foil having 100 nm deep pits of varying sub-wavelength diameter and pitch length. Subsequently this polymer foil was metallized and coated also by high-speed roll-to-roll methods. The perceived colors have high tolerance towards the thickness of the metal layer, when this thickness exceeds the depths of the pits, which enables the robust high-speed fabrication. This finding can pave the way for plasmonic meta-surfaces to be implemented in a broader range of applications such as printing, memory, surface enhanced Raman scattering (SERS), biosensors, flexible displays, photovoltaics, security, and product branding.
AB - Lab-scale plasmonic color printing using nano-structured and subsequently metallized surfaces have been demonstrated to provide vivid colors. However, upscaling these structures for large area manufacturing is extremely challenging due to the requirement of nanometer precision of metal thickness. In this study, we have investigated a plasmonic color meta-surface design that can be easily upscaled. We have demonstrated the feasibility of fabrication of these plasmonic color surfaces by a high-speed roll-to-roll method, comprising roll-to-roll extrusion coating at 10 m min-1 creating a polymer foil having 100 nm deep pits of varying sub-wavelength diameter and pitch length. Subsequently this polymer foil was metallized and coated also by high-speed roll-to-roll methods. The perceived colors have high tolerance towards the thickness of the metal layer, when this thickness exceeds the depths of the pits, which enables the robust high-speed fabrication. This finding can pave the way for plasmonic meta-surfaces to be implemented in a broader range of applications such as printing, memory, surface enhanced Raman scattering (SERS), biosensors, flexible displays, photovoltaics, security, and product branding.
U2 - 10.1039/c7nr05498j
DO - 10.1039/c7nr05498j
M3 - Journal article
C2 - 28914951
SN - 2040-3364
VL - 9
SP - 14280
EP - 14287
JO - Nanoscale
JF - Nanoscale
ER -