Planck Early Results: The thermal performance of Planck

P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, M. Baker, A. Balbi, A. J. Banday, R. B. Barreiro, E. Battaner, K. Benabed, A. Benoit, J. P. Bernard, M. Bersanelli, P. Bhandari, R. Bhatia, J. J. Bock, A. Bonaldi, J. R. BondJ. Borders, J. Borrill, F. R. Bouchet, B. Bowman, T. Bradshaw, E. Breelle, M. Bucher, C. Burigana, R. C. Butler, P. Cabella, P. Camus, C. M. Cantalupo, B. Cappellini, J. F. Cardoso, A. Catalano, L. Cayon, A. Challinor, A. Chamballu, J. P. Chambelland, J. Charra, M. Charra, L. Y Chiang, C. Chiang, P. R. Christensen, D. L. Clements, B. Collaudin, S. Colombi, F. Couchot, A. Coulais, B. P. Crill, M. Crook, F. Cuttaia, C. Damasio, L. Danese, R. D. Davies, R. J. Davis, P. de Bernardis, G. de Gasperis, A. de Rosa, J. Delabrouille, J. M. Delouis, F. -X. Desert, U. Doerl, K. Dolag, S. Donzelli, O. Dore, M. Douspis, X. Dupac, G. Efstathiou, T. A. Enslin, H. K. Eriksen, F. Finelli, S. Foley, O. Forni, P. Fosalba, J. J. Fourmond, M. Frailis, E. Franceschi, S. Galeotta, K. Ganga, E. Gavila, M. Giard, G. Giardino, Y. Giraud-Heraud, J. Gonzalez-Nuevo, K. M. Gorski, S. Gratton, A. Gregorio, A. Gruppuso, G. Guyot, D. Harrison, G. Helou, S. Henrot-Versille, C. Hernandez-Monteagudo, D. Herranz, S. R. Hildebrandt, E. Hivon, M. Hobson, W. A. Holmes, Allan Hornstrup, W. Hovest, R. J. Hoyland, K. M. Huffenberger, U. Israelsson, A. H. Jaffe, W. C. Jones, M. Juvela, E. Keihanen, R. Keskitalo, T. S. Kisner, R. Kneissl, L. Knox, H. Kurki-Suonio, G. Lagache, J. M. Lamarre, P. Lami, A. Lasenby, R. J. Laureijs, C. R. Lawrence, S. Leach, R. Leonardi, C. Leroy, P. B. Lilje, M. Lopez-Caniego, P. M. Lubin, J. F. Macias-Perez, T. Maciaszek, C. J. MacTavish, B. Maffei, D. Maino, N. Mandolesi, R. Mann, M. Maris, E. Martinez-Gonzalez, S. Masi, S. Matarrese, F. Matthai, P. Mazzotta, P. McGehee, P. R. Meinhold, A. Melchiorri, F. Melot, L. Mendes, A. Mennella, M. -A. Miville-Deschenes, A. Moneti, L. Montier, J. Mora, G. Morgante, N. Morisset, D. Mortlock, D. Munshi, A. Murphy, P. Naselsky, A. Nash, P. Natoli, C. B. Netterfield, D. Novikov, I. Novikov, I. J. O'Dwyer, S. Osborne, F. Pajot, F. Pasian, G. Patanchon, D. Pearson, O. Perdereau, L. Perotto, F. Perrotta, F. Piacentini, M. Piat, S. Plaszczynski, P. Platania, E. Pointecouteau, G. Polenta, N. Ponthieu, T. Poutanen, G. Prezeau, M. Prina, S. Prunet, J. L. Puget, J. P. Rachen, R. Rebolo, M. Reinecke, C. Renault, S. Ricciardi, T. Riller, I. Ristorcelli, G. Rocha, C. Rosset, J. A. Rubiino-Martin, B. Rusholme, M. Sandri, D. Santos, B. M. Schaefer, D. Scott, M. D. Seiffert, P. Shellard, G. F. Smoot, J. -L. Starck, P. Stassi, F. Stivoli, V. Stolyarov, R. Stompor, R. Sudiwala, J. -F. Sygnet, J. A. Tauber, L. Terenzi, L. Toffolatti, M. Tomasi, J. -P. Torre, M. Tristram, J. Tuovinen, L. Valenziano, L. Vibert, P. Vielva, F. Villa, N. Vittorio, L. A. Wade, B. D. Wandelt, C. Watson, S. D. M. White, A. Wilkinson, P. Wilson, D. Yvon, A. Zacchei, B. Zhang, A. Zonca

    Research output: Contribution to journalJournal articleResearchpeer-review

    370 Downloads (Pure)

    Abstract

    The performance of the Planck instruments in space is enabled by their low operating temperatures, 20K for LFI and 0.1K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers. Active coolers were chosen to minimize straylight on the detectors and to maximize lifetime. The scientific requirement for very broad frequency led to two detector technologies with widely dierent temperature and cooling needs. This made use of a helium cryostat, as used by previous cryogenic space missions (IRAS, COBE, ISO, SPITZER, AKARI), infeasible. Radiative cooling is provided by three V-groove radiators and a large telescope bae. The active coolers are a hydrogen sorption cooler (<20 K), a 4He Joule-Thomson cooler (4.7 K), and a 3He-4He dilution cooler (1.4K and 0.1 K). The flight system was at ambient temperature at launch and cooled in space to operating conditions. The bolometer plate of the High Frequency Instrument reached 93mK on 3 July 2009, 50 days after launch. The solar panel always faces the Sun, shadowing the rest of Planck, and operates at a mean temperature of 384 K. At the other end of the spacecraft, the telescope bae operates at 42.3K and the telescope primary mirror operates at 35.9 K. The temperatures of key parts of the instruments are stabilized by both active and passive methods. Temperature fluctuations are driven by changes in the distance from the Sun, sorption cooler cycling and fluctuations in gas-liquid flow, and fluctuations in cosmic ray flux on the dilution and bolometer plates. These fluctuations do not compromise the science data.
    Original languageEnglish
    JournalAstronomy and Astrophysics
    Pages (from-to)Planck2011-1.3
    ISSN0004-6361
    Publication statusPublished - 2011

    Fingerprint

    Dive into the research topics of 'Planck Early Results: The thermal performance of Planck'. Together they form a unique fingerprint.

    Cite this