Physiological and transcriptional profiling of surfactin exerted antifungal effect against Candida albicans

Ágnes Jakab, Fruzsina Kovács, Noémi Balla, Zoltán Tóth, Ágota Ragyák, Zsófi Sajtos, Kinga Csillag, Csaba Nagy-Köteles, Dániel Nemes, Ildikó Bácskay, István Pócsi, László Majoros, Ákos T. Kovács, Renátó Kovács*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

127 Downloads (Pure)

Abstract

Given the risk of Candida albicans overgrowth in the gut, novel complementary therapies should be developed to reduce fungal dominancy. This study highlights the antifungal characteristics of a Bacillus subtilis-derived secondary metabolite, surfactin with high potential against C. albicans. Surfactin inhibited the growth of C. albicans following a 1-hour exposure, in addition to reduced adhesion and morphogenesis. Specifically, surfactin did not affect the level of reactive oxygen species but increased the level of reduced glutathione. Surprisingly, ethanol production was increased following 2 h of surfactin exposure. Surfactin treatment caused a significant reduction in intracellular iron, manganese and zinc content compared to control cells, whereas the level of copper was not affected. Alongside these physiological properties, surfactin also enhanced fluconazole efficacy. To gain detailed insights into the surfactin-related effects on C. albicans, genome-wide gene transcription analysis was performed. Surfactin treatment resulted in 1390 differentially expressed genes according to total transcriptome sequencing (RNA-Seq). Of these, 773 and 617 genes with at least a 1.5-fold increase or decrease in transcription, respectively, were selected for detailed investigation. Several genes involved in morphogenesis or related to metabolism (e.g., glycolysis, ethanol and fatty acid biosynthesis) were down-regulated. Moreover, surfactin decreased the expression of ERG1, ERG3, ERG9, ERG10 and ERG11 involved in ergosterol synthesis, whereas genes associated with ribosome biogenesis and iron metabolism and drug transport-related genes were up-regulated. Our data demonstrate that surfactin significantly influences the physiology and gene transcription of C. albicans, and could contribute to the development of a novel innovative complementary therapy.
Original languageEnglish
Article number113220
JournalBiomedicine and Pharmacotherapy
Volume152
Number of pages10
ISSN1950-6007
DOIs
Publication statusPublished - 2022

Keywords

  • Canadian albicans
  • Surfactin
  • Probiotics
  • Transcriptomics
  • Metal
  • Bacilius subtilis

Fingerprint

Dive into the research topics of 'Physiological and transcriptional profiling of surfactin exerted antifungal effect against Candida albicans'. Together they form a unique fingerprint.

Cite this