Abstract
Bacteriophage P1 encodes a single-stranded DNA-binding protein (SSB-P1), which shows 66% amino acid sequence identity to the SSB protein of the host bacterium Escherichia coli. A phylogenetic analysis indicated that the P1 ssb gene coexists with its E. coli counterpart as an independent unit and does not represent a recent acquirement of the phage. The P1 and E. coli SSB proteins are fully functionally interchangeable. SSB-P1 is nonessential for phage growth in an exponentially growing E. coli host, and it is sufficient to promote bacterial growth in the absence of the E. coli SSB protein. Expression studies showed that the P1 ssb gene is transcribed only, in an rpoS-independent fashion, during stationary-phase growth in E. coli. Mixed infection experiments demonstrated that a wild-type phage has a selective advantage over an ssb-null mutant when exposed to a bacterial host in the stationary phase. These results reconciled the observed evolutionary conservation with the seemingly redundant presence of ssb genes in many bacteriophages and conjugative plasmids.
Original language | English |
---|---|
Journal | Journal of Virology |
Volume | 76 |
Issue number | 19 |
Pages (from-to) | 9695-9701 |
ISSN | 0022-538X |
Publication status | Published - 2002 |