TY - JOUR
T1 - Photovoltage versus microprobe sheet resistance measurements on ultrashallow structures
AU - Clarysse, T.
AU - Moussa, A.
AU - Parmentier, B.
AU - Bogdanowicz, J.
AU - Vandervorst, W.
AU - Bender, H.
AU - Pfeffer, M.
AU - Schellenberger, M.
AU - Nielsen, Peter Folmer
AU - Thorsteinsson, Sune
AU - Lin, Rong
AU - Petersen, Dirch Hjorth
PY - 2010
Y1 - 2010
N2 - Earlier work [T. Clarysse , Mater. Sci. Eng., B 114-115, 166 (2004); T. Clarysse , Mater. Res. Soc. Symp. Proc. 912, 197 (2006)] has shown that only few contemporary tools are able to measure reliably (within the international technology roadmap for semiconductors specifications) sheet resistances on ultrashallow (sub-50-nm) chemical-vapor-deposited layers [T. Clarysse , Mater. Res. Soc. Symp. Proc. 912, 197 (2006)], especially in the presence of medium/highly doped underlying layers (representative for well/halo implants). Here the authors examine more closely the sheet resistance anomalies which have recently been observed between junction photovoltage (JPV) based tools and a micrometer-resolution four-point probe (M4PP) tool on a variety of difficult, state-of-the-art sub-32-nm complementary metal-oxide semiconductor structures (low energy and cluster implants, with/without halo, flash- and laser-based millisecond anneal). Conventional four-point probe tools fail on almost all of these samples due to excessive probe penetration, whereas in several cases variable probe spacing (using a conventional spreading resistance probe tool) [T. Clarysse , Mater. Sci. Eng. R. 47, 123 (2004)] still gives useful values to within about 20%-35% due to its limited probe penetration (5-10 nm at 5 g load). M4PP measurements give systematically a sensible and reproducible result. This is also the case for JPV-based sheet resistance measurements, although these appear to be prone to correct calibration procedures and are not designed for the characterization of multijunctions. Moreover, in a significant number of cases, residual damage and/or unexpected junction-leakage currents appear to induce a strong signal reduction, limiting the applicability of the JPV technique. This has been further investigated by transmission-electron microscopy, high carrier-injection photomodulated optical-reflectance, and Synopsis-Sentaurus device simulations.
AB - Earlier work [T. Clarysse , Mater. Sci. Eng., B 114-115, 166 (2004); T. Clarysse , Mater. Res. Soc. Symp. Proc. 912, 197 (2006)] has shown that only few contemporary tools are able to measure reliably (within the international technology roadmap for semiconductors specifications) sheet resistances on ultrashallow (sub-50-nm) chemical-vapor-deposited layers [T. Clarysse , Mater. Res. Soc. Symp. Proc. 912, 197 (2006)], especially in the presence of medium/highly doped underlying layers (representative for well/halo implants). Here the authors examine more closely the sheet resistance anomalies which have recently been observed between junction photovoltage (JPV) based tools and a micrometer-resolution four-point probe (M4PP) tool on a variety of difficult, state-of-the-art sub-32-nm complementary metal-oxide semiconductor structures (low energy and cluster implants, with/without halo, flash- and laser-based millisecond anneal). Conventional four-point probe tools fail on almost all of these samples due to excessive probe penetration, whereas in several cases variable probe spacing (using a conventional spreading resistance probe tool) [T. Clarysse , Mater. Sci. Eng. R. 47, 123 (2004)] still gives useful values to within about 20%-35% due to its limited probe penetration (5-10 nm at 5 g load). M4PP measurements give systematically a sensible and reproducible result. This is also the case for JPV-based sheet resistance measurements, although these appear to be prone to correct calibration procedures and are not designed for the characterization of multijunctions. Moreover, in a significant number of cases, residual damage and/or unexpected junction-leakage currents appear to induce a strong signal reduction, limiting the applicability of the JPV technique. This has been further investigated by transmission-electron microscopy, high carrier-injection photomodulated optical-reflectance, and Synopsis-Sentaurus device simulations.
KW - transmission electron microscopy
KW - electron probe analysis
KW - electric resistance measurement
KW - CMOS integrated circuits
KW - calibration
KW - chemical vapour deposition
U2 - 10.1116/1.3292637
DO - 10.1116/1.3292637
M3 - Journal article
SN - 2166-2746
VL - 28
SP - 8
EP - 14
JO - Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
JF - Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
IS - 1C
ER -