Photocatalytic inactivation of *Vibrio fischeri* using FeO₃-TiO₂-based nanoparticles

Photocatalytic inactivation of Vibrio fischeri using FeO₃-TiO₂-based nanoparticles

Biofouling is a major problem in water membrane processes, especially in seawater reverse osmosis plants. Inactivation of *Vibrio fischeri* (a well-known marine bacterium forming biofilm) through photocatalysis via visible light was investigated in this work using active FeO₃-TiO₂ nanoparticles. Five FeO₃-TiO₂ photocatalysts with different weight percentage of FeO₃ (0–5wt%) were synthesized using an ultrasonic-assisted co-precipitation method. The photocatalysts were characterized by powder X-ray diffraction (XRD), BET surface area, transmission electron microscopy (TEM) plus selected area electron diffraction (SAED) patterns, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and diffuse-reflectance spectroscopy (DRS). Based on the design of experiments, the synthesized photocatalysts were tested for inactivation of *V. fischeri* under visible light irradiation at different temperatures (25–35°C) and different photocatalyst dosage (0.1–2g/L). The photocatalytic microbial inactivation experiments were performed in artificial seawater appropriate for growth of the marine bacterium. The results revealed that the highest inactivation efficiency of *V. fischeri* was achieved when 1g/L of 2.5wt% FeO₃-TiO₂ were used, at 35°C. Photocatalytic inactivation of microorganisms using visible light-driven FeO₃-TiO₂ photocatalysts, could introduce an innovative green method in pretreatment units of reverse osmosis plants to control the membrane biofouling.

General information

Publication status: Published
Organisations: Department of Environmental Engineering, Residual Resource Engineering, Iranian Research Organization for Science and Technology (IROST)
Corresponding author: Angelidaki, I.
Contributors: Baniamerian, H., Safavi, M., Alvarado-Morales, M., Tsapekos, P., Angelidaki, I., Shokrollahzadeh, S.
Pages: 497-506
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: Environmental Research
Volume: 166
ISSN (Print): 0013-9351
Ratings:
 - BFI (2018): BFI-level 2
 - Scopus rating (2018): CiteScore 5.19 SJR 1.567 SNIP 1.534
 - Web of Science (2018): Impact factor 5.026
 - Web of Science (2018): Indexed yes
Original language: English
Keywords: Seawater pre-treatment, FeO₃-TiO₂ nano-photocatalyst, Visible lights, Marine bacteria, Biofouling
DOI: 10.1016/j.envres.2018.06.011
Source: FindIt
Source-ID: 2435328569
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review