Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures

Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures

The vibrational response of finite periodic lattice structures subjected to periodic loading is investigated. Special attention is devoted to the response in frequency ranges with gaps in the band structure for the corresponding infinite periodic lattice. The effects of boundaries, viscous damping, and imperfections are studied by analyzing two examples; a 1-D filter and a 2-D wave guide. In 1-D the structural response in the band gap is shown to be insensitive to damping and small imperfections. In 2-D the similar effect of damping is noted for one type of periodic structure, whereas for another type the band gap effect is nearly eliminated by damping. In both 1-D and 2-D it is demonstrated how the free structural boundaries affect the response in the band gap due to local resonances. Finally, 2-D wave guides are considered by replacing the periodic structure with a homogeneous structure in a straight and a 90° bent path, and it is shown how the vibrational response is confined to the paths in the band gap frequency ranges.

General information
Publication status: Published
Organisations: Solid Mechanics, Department of Mechanical Engineering
Contributors: Jensen, J. S.
Pages: 1053-1078
Publication date: 2003
Peer-reviewed: Yes

Publication information
Journal: Journal of Sound and Vibration
Volume: 266
ISSN (Print): 0022-460X
Ratings:
Scopus rating (2003): SJR 1.216 SNIP 1.4
Web of Science (2003): Indexed yes
Original language: English
Source: orbit
Source-ID: 25538
Research output: Contribution to journal › Journal article – Annual report year: 2003 › Research › peer-review