TY - JOUR
T1 - Phenolic cross-links: building and de-constructing the plant cell wall
AU - Mnich, Ewelina
AU - Bjarnholt, Nanna
AU - Eudes, Aymerick
AU - Harholt, Jesper
AU - Holland, Claire
AU - Jørgensen, Bodil
AU - Larsen, Flemming Hofmann
AU - Liu, Ming
AU - Manat, Renil
AU - Meyer, Anne S.
AU - Mikkelsen, Jørn Dalgaard
AU - Motawia, Mohammed Saddik
AU - Muschiol, Jan
AU - Møller, Birger Lindberg
AU - Møller, Svenning Rune
AU - Perzon, Alixander
AU - Petersen, Bent Larsen
AU - Ravn, Jonas Laukkonen
AU - Ulvskov, Peter
PY - 2020
Y1 - 2020
N2 - Covering: Up to 2019Phenolic cross-links and phenolic inter-unit linkages result from the oxidative coupling of two hydroxycinnamates or two molecules of tyrosine. Free dimers of hydroxycinnamates, lignans, play important roles in plant defence. Cross-linking of bound phenolics in the plant cell wall affects cell expansion, wall strength, digestibility, degradability, and pathogen resistance. Cross-links mediated by phenolic substituents are particularly important as they confer strength to the wall via the formation of new covalent bonds, and by excluding water from it. Four biopolymer classes are known to be involved in the formation of phenolic cross-links: lignins, extensins, glucuronoarabinoxylans, and side-chains of rhamnogalacturonan-I. Lignins and extensins are ubiquitous in streptophytes whereas aromatic substituents on xylan and pectic side-chains are commonly assumed to be particular features of Poales sensu lato and core Caryophyllales, respectively. Cross-linking of phenolic moieties proceeds via radical formation, is catalyzed by peroxidases and laccases, and involves monolignols, tyrosine in extensins, and ferulate esters on xylan and pectin. Ferulate substituents, on xylan in particular, are thought to be nucleation points for lignin polymerization and are, therefore, of paramount importance to wall architecture in grasses and for the development of technology for wall disassembly, e.g. for the use of grass biomass for production of 2nd generation biofuels. This review summarizes current knowledge on the intra- and extracellular acylation of polysaccharides, and inter- and intra-molecular cross-linking of different constituents. Enzyme mediated lignan in vitro synthesis for pharmaceutical uses are covered as are industrial exploitation of mutant and transgenic approaches to control cell wall cross-linking.
AB - Covering: Up to 2019Phenolic cross-links and phenolic inter-unit linkages result from the oxidative coupling of two hydroxycinnamates or two molecules of tyrosine. Free dimers of hydroxycinnamates, lignans, play important roles in plant defence. Cross-linking of bound phenolics in the plant cell wall affects cell expansion, wall strength, digestibility, degradability, and pathogen resistance. Cross-links mediated by phenolic substituents are particularly important as they confer strength to the wall via the formation of new covalent bonds, and by excluding water from it. Four biopolymer classes are known to be involved in the formation of phenolic cross-links: lignins, extensins, glucuronoarabinoxylans, and side-chains of rhamnogalacturonan-I. Lignins and extensins are ubiquitous in streptophytes whereas aromatic substituents on xylan and pectic side-chains are commonly assumed to be particular features of Poales sensu lato and core Caryophyllales, respectively. Cross-linking of phenolic moieties proceeds via radical formation, is catalyzed by peroxidases and laccases, and involves monolignols, tyrosine in extensins, and ferulate esters on xylan and pectin. Ferulate substituents, on xylan in particular, are thought to be nucleation points for lignin polymerization and are, therefore, of paramount importance to wall architecture in grasses and for the development of technology for wall disassembly, e.g. for the use of grass biomass for production of 2nd generation biofuels. This review summarizes current knowledge on the intra- and extracellular acylation of polysaccharides, and inter- and intra-molecular cross-linking of different constituents. Enzyme mediated lignan in vitro synthesis for pharmaceutical uses are covered as are industrial exploitation of mutant and transgenic approaches to control cell wall cross-linking.
U2 - 10.1039/c9np00028c
DO - 10.1039/c9np00028c
M3 - Review
C2 - 31971193
SN - 0265-0568
VL - 37
SP - 919
EP - 961
JO - Natural Product Reports
JF - Natural Product Reports
IS - 7
ER -