Phase-space interference in extensive and nonextensive quantum heat engines

Phase-space interference is at the heart of what sets the quantum and classical worlds apart. We demonstrate that quantum interference effects involving a many-body working medium is responsible for genuinely nonclassical features in the performance of a quantum heat engine. The features with which quantum interference manifests itself in the work output of the engine depends strongly on the extensive nature of the working medium. While identifying the class of work substances that optimize the performance of the engine, our results shed light on the optimal size of such media of quantum workers to maximize the work output and efficiency of quantum energy machines.

General information
Publication status: Published
Organisations: Department of Photonics Engineering, Structured Electromagnetic Materials, Queen's University Belfast, Koc University
Corresponding author: Mustecaplioglu, O. E.
Contributors: Hardal, A. Ü. C., Paternostro, M., Mustecaplioglu, O. E.
Number of pages: 9
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Physical Review E
Volume: 97
Issue number: 4
Article number: 042127
ISSN (Print): 2470-0045
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 2.38 SJR 0.992 SNIP 1.005
Web of Science (2018): Impact factor 2.353
Web of Science (2018): Indexed yes
Original language: English
Electronic versions:
PhysRevE.97.042127.pdf
DOIs:
10.1103/PhysRevE.97.042127
Source: FindIt
Source ID: 2393316922
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review