Phase-Modulated Nonresonant Laser Pulses Can Selectively Convert Enantiomers in a Racemic Mixture - DTU Orbit (16/10/2019)

Phase-Modulated Nonresonant Laser Pulses Can Selectively Convert Enantiomers in a Racemic Mixture

Deracemization occurs when a racemic molecular mixture is transformed into a mixture containing an excess of a single enantiomer. Recent advances in ultrafast laser technology hint at the possibility of using shaped pulses to generate deracemization via selective enantiomeric conversion; however, experimental implementation remains a challenge and has not yet been achieved. Here we suggest a simple, yet novel approach to laser-induced enantiomeric conversion based on dynamic Stark control. We demonstrate theoretically that current laser and optical technology can be used to generate a pair of phase-modulated, nonresonant, linearly polarized Gaussian laser pulses that can selectively deracemize a racemic mixture of 3D-oriented, 3,5-difluoro-3',5'-dibromobiphenyl (F2H3C6-C6H3Br2) molecules, the laser-induced dynamics of which are well studied experimentally. These results strongly suggest that designing a closed-loop coherent control scheme based on this methodology may lead to the first-ever achievement of enantiomeric conversion via coherent laser light in a laboratory setting.

General information
Publication status: Published
Organisations: Department of Chemistry
Contributors: Thomas, E. F., Henriksen, N. E.
Number of pages: 8
Pages: 2212-2219
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Physical Chemistry Letters
Volume: 8
Issue number: 10
ISSN (Print): 1948-7185
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 8.44 SJR 4.667 SNIP 1.566
Web of Science (2017): Impact factor 8.709
Web of Science (2017): Indexed yes
Original language: English
DOI:
10.1021/acs.jpclett.7b00662
Source: FindIt
Source ID: 2358324481
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review