Permeability, strength and electrochemical studies on ceramic multilayers for solid-state electrochemical cells

Kjeld Bøhm Andersen, Benoit Charlas, Eugen Stamate, Kent Kammer Hansen

Research output: Contribution to journalJournal articleResearchpeer-review

250 Downloads (Pure)


An electrochemical reactor can be used to purify flue gasses. Such a reactor can be a multilayer structure consisting of alternating layers of porous electrodes and electrolytes (a porous cell stack). In this work optimization of such a unit has been done by changing the pore former composition and the electrode powder pre-treatment. The effect on permeability, mechanical strength and electrochemical behavior was studied in this work. The effects were evaluated by measuring the pressure difference over the samples in relation to the flow through the sample, by the ball on ring method and by electrochemical impedance spectroscopy in air at temperatures between 300 and 450 °C. The resulting structures were also evaluated with scanning electron microscopy.The work showed a dependence on the pore former composition and electrode powder pre-treatment resulting in variations in porosity, strength and flow resistance. A higher porosity gives a lower backpressure. The electrochemical performance shows that both thickness and amount of pore former in the electrolyte is important, but almost no dependence of electrode composition on the polarization resistances within the tested compositions.
Original languageEnglish
Article numbere00371
Number of pages22
Publication statusPublished - 2017


  • Chemical engineering
  • Materials science

Cite this