Patterns of a slow air-water flow in a semispherical container

Adnan Balci, Morten Brøns, Miguel A. Herrada, Vladimir N. Shtern

Research output: Contribution to journalJournal articleResearchpeer-review

219 Downloads (Pure)


This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis-bottom intersection. Then this eddy expands and reaches the interface, inducing a new cell in the air flow. This cell appears as a thin near-axis layer which then expands and occupies the entire air domain. As the disk rotation intensifies at Hw = 0.8, the new air cell shrinks to the axis and disappears. The bulk water circulation becomes separated from the interface by a thin layer of water counter-circulation. These changes in the flow topology occur due to (a) competing effects of the air meridional flow and swirl, which drive meridional motions of opposite directions in water, and (b) feedback of water flow on the air flow. In contrast to flows in cylindrical and conical containers, there is no interaction with Moffatt corner vortices here.
Original languageEnglish
JournalEuropean Journal of Mechanics B - Fluids
Pages (from-to)1-8
Publication statusPublished - 2016


  • Swirling motions
  • Two-fluid flows
  • Viscous incompressible fluids
  • Sealed container
  • Changes in flow topology

Fingerprint Dive into the research topics of 'Patterns of a slow air-water flow in a semispherical container'. Together they form a unique fingerprint.

Cite this