Patterns and drivers of fish community assembly in a large marine ecosystem

Lauréne Pécuchet, Anna Törnroos, Martin Lindegren

Research output: Contribution to journalJournal articleResearchpeer-review

86 Downloads (Pure)


The presence and survival of the species in a community depend on their abilities to maximize fitness in a given environment. The study of the processes that control survival and co‑existence, termed ‘assembly rules’, follows various mechanisms, primarily related to biotic or abiotic factors. To determine assembly rules, ecological similarities of co-occurring species are often investigated. This can be evaluated using trait-based indices summarizing the species’ niches in a given community. In order to investigate the underlying processes shaping community assembly in marine ecosystems, we investigated the patterns and drivers of fish community composition in the Baltic Sea, a semi-enclosed sea characterized by a pronounced environmental gradient. Our results showed a marked decline in species- and functional richness, largely explained by decreasing salinities. In addition, habitat complexity and oxygen were found to be significant drivers. Furthermore, we showed that the trait composition of the fish community in the western Baltic Sea is more similar than expected by random chance alone. This implies that environmental filtering, acting along the salinity gradient, is the dominant factor shaping community composition. However, community composition in the eastern part, an area beyond the steep decline in salinity, was characterized by fewer species with largely different trait characteristics, indicating that community assembly is also affected by biotic interactions. Our results add to the knowledge base of key abiotic drivers impacting marine fish communities and their vulnerability to environmental changes, a key concern for fisheries and marine ecosystem management
Original languageEnglish
JournalMarine Ecology - Progress Series
Pages (from-to)239-248
Publication statusPublished - 2016


Dive into the research topics of 'Patterns and drivers of fish community assembly in a large marine ecosystem'. Together they form a unique fingerprint.

Cite this