Pattern formation in annular systems of repulsive particles

General particle models with symmetric and asymmetric repulsion are studied and investigated for finite-range and exponential interaction in an annulus. In the symmetric case transitions from one- to multi-lane behavior including multistability are observed for varying particle density and for a varying curvature with fixed density. Hence, the system cannot be approximated by a periodic channel. In the asymmetric case, which is important in pedestrian dynamics, we reveal an inhomogeneous new phase, a traveling wave reminiscent of peristaltic motion.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Dynamical Systems, Department of Physics, Bogolyubov Institute for Theoretical Physics
Contributors: Marschler, C., Starke, J., Sørensen, M. P., Gaididei, Y. B., Christiansen, P. L.
Pages: 166-170
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Physics Letters A
Volume: 380
Issue number: 1-2
ISSN (Print): 0375-9601
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.69 SJR 0.773 SNIP 0.873
Web of Science (2016): Impact factor 1.772
Web of Science (2016): Indexed yes
Original language: English
Keywords: Repulsive particle models, Asymmetric interaction, Multilane patterns, Pedestrian dynamics
DOIs:
10.1016/j.physleta.2015.10.038
Source: FindIt
Source ID: 2287663832
Research output: Contribution to journal > Journal article – Annual report year: 2015 > Research > peer-review