Projects per year
Abstract
For decades much work has been devoted to the research and development of
automatic arc welding systems. However, it has remained a challenging problem.
Besides the very complex arc welding process itself, the lack of ability to precisely
sense the welding process, including the seam geometry and the weld pool, has
also prevented the realization of a closed-loop control system for many years,
even though a variety of sensors have been developed.
Among all the sensor systems, visual sensors have the advantage of receiving
visual information and have been drawn more and more attentions. Typical
industrial solutions for seam detection such as using laser scanners suer from
several limitations. For instance, it must be positioned some distance ahead
to the molten pool and may cause problem when dealing with shiny surfaces.
Existing techniques for weld pool sensing mostly rely on auxiliary light sources
and are dicult to be widely employed in industry.
Compared to human welders, existing sensor systems exhibit severe limitations
as mentioned above. With the protection of only a welding shield glass, i.e.,
without any auxiliary illumination (passive), human welders can extract visual
information on the weld pool and the nearby seam as the feedback to adjust
the welding torch and/or welding parameters. It is an attractive idea from both
academic and industrial point of view to develop a vision system without using
any auxiliary light sources which can nevertheless extract relevant information.
However, interpreting the images captured in a passive way during welding is
challenging and may heavily rely on sophisticated image analysis and machine
learning techniques. This industrial PhD project has been founded to tackle
this problem.
For the last three years, we have explored dierent possibilities and thoroughly
investigated the development of a passive vision system which is only equipped
with a single o-the-shelf CCD camera and optical lters, yet capable of extracting
sucient information for the control purpose.
From the hardware side, we have studies the selection of proper optical lters
to reduce the interference of the extremely strong arc light and controlling the
exposure time of the camera on the
y to capture dierent images for seam
tracking and weld pool sensing.
From the software side, we have designed a passive seam detection algorithm
based on robust estimation techniques which can detect the seam geometry very
close to the weld pool region. For the weld pool boundary tracking, we have
proposed three approaches based on deformable models. The rst approach
employs in
ating balloons and snakes, which are two types of deformable models,
to capture the weld pool boundary. The rst approach relies on a special
periodical initialization scheme and only work in short-circuit mode. In order
to handle other modes of the arc welding process such as spray mode where the
strong arc light exists continuously, we have proposed another two approaches in
which the initialization does not rely on the short-circuit moment. The essence
is that deformable models can be immune to spurious edges caused by strong
arc light and/or re
ection from the seam by incorporating prior information on
regions and boundaries.
The main ndings are organized and presented in this dissertation.
Original language | English |
---|
Place of Publication | Kgs. Lyngby, Denmark |
---|---|
Publisher | Technical University of Denmark |
Publication status | Published - Dec 2011 |
Fingerprint
Dive into the research topics of 'Passive Visual Sensing in Automatic Arc Welding'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Direct vision based molten pool feature extraction in automated arc welding
Liu, J. (PhD Student), Fan, Z. (Main Supervisor), Christensen, K. H. (Supervisor), Blanke, M. (Examiner), Lucas, W. (Examiner), Sporring, J. (Examiner), Klæstrup Kristensen, J. (Supervisor) & Olsen, S. I. (Supervisor)
01/07/2008 → 25/01/2012
Project: PhD