Parametric and numerical Finite Element simulation of wind turbine blades subjected to thermal residual stresses

Peyman Ayoubi, Kaveh Rashvand*, Pedram Ayyobi, Moloud Mohammadi

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

12 Downloads (Pure)

Abstract

This study aims to contribute to the ongoing efforts to enhance the reliability and durability of wind turbine blades, a critical component in wind energy generation. Specifically, this research addresses the issue of tunneling cracking and severe damage that can occur in wind turbine blades due to cohesive failure of the trailing edge. To achieve this objective, the study employs a rigorous approach, utilizing a full three-dimensional (3D) modeling strategy with finite element analysis (FEA) to simulate the behavior of wind turbine blades. The effect of cohesive materials and layered simulation methods on the thermal residual stress and crack propagation is thoroughly investigated. In particular, the study assesses the influence of carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GFRP) materials on the phenomenon under consideration. In addition, the study undertakes a comprehensive parametric analysis to identify the independent effects of material properties and numerical simulation on thermal residual stress. Moreover, the research explores the behavior of the cohesive zone model in terms of thermal residual stress and crack propagation. The findings of this study have significant implications for researchers and practitioners in the wind energy industry. The study's outcomes can aid in the development of improved materials and simulation techniques to mitigate thermal residual stress and prevent the occurrence of tunneling cracking and other types of damage in wind turbine blades. As such, this research contributes to the broader efforts to advance the reliability, efficiency, and sustainability of wind energy generation.
Original languageEnglish
Title of host publication43rd Risoe International Symposium on Materials Science
Number of pages11
Volume1293
PublisherIOP Publishing
Publication date2023
Article number012035
DOIs
Publication statusPublished - 2023
Event43rd Risø International Symposium on Materials Science - Risø, Roskilde, Denmark
Duration: 4 Sept 20237 Sept 2023

Conference

Conference43rd Risø International Symposium on Materials Science
Country/TerritoryDenmark
CityRisø, Roskilde
Period04/09/202307/09/2023

Fingerprint

Dive into the research topics of 'Parametric and numerical Finite Element simulation of wind turbine blades subjected to thermal residual stresses'. Together they form a unique fingerprint.

Cite this