Abstract
The oxygen non-stoichiometry was determined by coulometric titration for the perovskite oxides La0.2Sr0.8FeO3 − δ and La0.2Sr0.8Fe0.8B0.2O3 − δ (B = Ti4+ and Ta5+) in the temperature range 600 °C ⩽ T ⩽ 900 °C and the oxygen partial pressure range: 1⋅10-15≤po2≤0.209 atm. The non-stoichiometry (δ) is observed to decrease with B-site substitution of Fe. The data can be well fitted with simple defect chemistry models. At low oxygen non-stoichiometry all compositions show a deviation from a localized electrons defect model. The standard and partial molar thermodynamic quantities were obtained and a gradual transition from localized to itinerant electrons with decreasing non-stoichiometry is proposed from the δ-dependency of the configurational entropy. The absolute value of the enthalpy of oxidation decreases upon B-site substitution of Fe proposing a decreased thermodynamic stability for the substituted materials. The electrical conductivity was measured at T = 900 °C in the oxygen partial pressure range: 1⋅10-17≤po2≤0.209 atm. The electrical conductivity and charge carrier mobility decrease upon 20% substitution of Fe roughly by a factor of 2, but do not show a significant dependence on the nature of the B-site dopant.
Original language | English |
---|---|
Journal | Journal of the Electrochemical Society |
Volume | 161 |
Issue number | 3 |
Pages (from-to) | F176-F184 |
ISSN | 0013-4651 |
DOIs | |
Publication status | Published - 2014 |