Abstract
The oxidative deterioration of milk emulsions supplemented with 1.5 wt-% fish oil was investigated by sensory evaluation and by determining the peroxide value and volatile oxidation products after cold storage. Two types of milk emulsions were produced, one with a highly unsaturated tuna oil (38 wt-% of n-3 fatty acids) and one with cod liver oil (26 wt-% of n-3 fatty acids). The effect of added calcium disodium ethylenediaminetetraacetate (EDTA) on oxidation was also investigated. Emulsions based on cod liver oil with a slightly elevated peroxide value (1.5 meq/kg) oxidised significantly faster than the tuna oil emulsions, having a lower initial peroxide value (0.1 meq/kg). In the tuna oil emulsions the fishy off-flavour could not be detected throughout the storage period. Addition of 5-50 ppm EDTA significantly reduced the development of volatile oxidation products in the cod liver oil emulsions, indicating that metal chelation with EDTA could inhibit the decomposition of lipid hydroperoxides in these emulsions. This study showed that an oxidatively stable milk emulsion containing highly polyunsaturated tuna fish oil could be prepared without significant fishy off-flavour development upon storage, provided that the initial peroxide value was sufficiently low.
Original language | English |
---|---|
Journal | European Journal of Lipid Science and Technology |
Volume | 105 |
Pages (from-to) | 518-528 |
ISSN | 1438-7697 |
Publication status | Published - 2003 |