Oxidation in ceria infiltrated metal supported SOFCs – A TEM investigation

Ruth Knibbe, Hsiang-Jen Wang, Peter Blennow Tullmar, Karl Tor Sune Thydén, Åsa Helen Persson, Lars Mikkelsen, Trine Klemensø

Research output: Contribution to journalJournal articleResearchpeer-review


The oxidation resistance of the Fe–Cr alloy backbone structure of metal supported solid oxide fuel cells is significantly improved when infiltrated with gadolinium doped ceria (CGO) particles. The mechanism for the improved oxidation behaviour is elucidated using various analytical transmission electron microscopy (TEM) techniques including energy-dispersive X-ray spectroscopy and electron energy-loss spectroscopy of focus ion beamed TEM samples. The infiltrated CGO is predominately converted into CeFeO3 after high temperature processing, protecting the alloy. A thin layer of Cr-oxide is observed to be sandwiched between the CeFeO3/CGO layers and the Fe–Cr alloy particles. Despite the improved oxidation resistance at open circuit voltage, during fuel cell testing accelerated oxidation is observed at the triple phase boundaries.
Original languageEnglish
JournalJournal of Power Sources
Pages (from-to)75-82
Publication statusPublished - 2013


  • Analytical transmission electron microscopy
  • Metal supported solid oxide fuel cells
  • Fuel cell durability
  • CeFeO3
  • Ceria


Dive into the research topics of 'Oxidation in ceria infiltrated metal supported SOFCs – A TEM investigation'. Together they form a unique fingerprint.

Cite this