Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil - DTU Orbit (11/08/2019)

Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil
The emission of silver and zinc to the aqueous environment (rain, fog, dew) from polymer solar cells installed outdoors is presented. Studies included pristine solar cells and solar cells subjected to mechanical damage under natural weather conditions in Denmark. We find the emission of silver and zinc to the environment through precipitated water for damaged solar cells, and also observed failure and emission from an initially undamaged device in an experiment that endured for 6 months. In the case of the damaged cells, we found that the drinking water limits for Ag were only exceeded on a few single days. We also progressed our studies to include end-of-life management. To assess the implications of improper practices (uncontrolled disposal, landfilling) at the end-of-life, we buried different OPV types in intact and damaged forms in soil columns. In the case of high Ag emission (shredded cells), the potential for migration was confirmed, even though the soil was found to exhibit sequestration of silver. We conclude that recycling of Ag at the end-of-life is mandatory from an environmental point of view.

General information
Publication status: Published
Organisations: Department of Energy Conversion and Storage, Functional organic materials, University of Applied Sciences and Arts Northwestern Switzerland
Contributors: Espinosa Martinez, N., Zimmermann, Y., Benatto, G. A. D. R., Lenz, M., Krebs, F. C.
Number of pages: 7
Pages: 1674-1680
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Energy & Environmental Science
Volume: 9
Issue number: 5
ISSN (Print): 1754-5692
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 26.39 SJR 12.283 SNIP 4.325
Web of Science (2016): Impact factor 29.518
Web of Science (2016): Indexed yes
Original language: English
Electronic versions:
c6ee00578k.pdf
DOIs:
10.1039/c6ee00578k

Bibliographical note
This article is Open Access and licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
Source: FindIt
Source-ID: 277538081
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review