Abstract
The phenomenon of quantum revivals resulting from the self-interference of wave packets has been observed in several quantum systems and utilized widely in spectroscopic applications. Here, we present a combined analytical and numerical study on the generation of orientational quantum revivals (OQRs) exclusively using a single-cycle terahertz pulse. As a proof of principle, we examine the scheme in the linear polar molecule HCN with experimentally accessible pulse parameters and obtain strong field-free OQR without requiring the condition of the sudden-impact limit. To visualize the involved quantum mechanism, we derive a three-state model using the Magnus expansion of the time-evolution operator. Interestingly, the terahertz pulse interaction with the electric-dipole moment can activate direct multiphoton processes, leading to OQR enhancements beyond that induced by a rotational ladder-climbing mechanism from the rotational ground state. We further show that the theoretical maximum degree of orientation (0.774) for three populated rotational states can be obtained with available terahertz pulses.
Original language | English |
---|---|
Article number | 063124 |
Journal | Physical Review A |
Volume | 102 |
Issue number | 6 |
ISSN | 2469-9926 |
DOIs | |
Publication status | Published - 2020 |